论文部分内容阅读
抗生素菌渣是一种威胁环境和人类健康的有机危险废物。热解可以分解残留在菌渣中的抗生素并将菌渣转化为有价值的产品,而菌渣中的氮会影响生物油的利用。阐明菌渣在热解过程中的产物特性和氮迁移机理,将有助于菌渣的资源化利用。在本文中,通过分形维数方法分别分析了青霉素菌渣热解炭的2D表面形貌、3D表面形貌和内部孔结构随热解温度的变化。结果表明,热解过程中挥发分的释放导致菌渣热解炭表面上形成大量狭缝形微孔结构。在500℃慢速热解条件下得到的热解炭具有最高的分形维数值,具有进一步活化改性制备活性炭的前景。在500℃快速热解过程中得到的生物油产率达到最大值28.4wt%,含氮化合物含量为38.9%,具有进一步资源化利用的潜力。青霉素菌渣中蛋白质/氨基酸的环化作用有利于吡咯和吡啶的生成。当加热到600-700℃时,热解炭中的吡啶和吡咯通过缩合生成季氮,同时通过二次热裂解生成HCN。酰胺、胺、吡啶和吲哚是生物油中主要的含氮物质。谷氨酸和天冬氨酸的分解导致了菌渣快速热解生物油中环酰胺的生成,组氨酸的分解导致咪唑和芳香族咪唑的形成。采用量子化学计算方法分析了生物油中主要含氮化合物的形成和转化过程。结果表明,菌渣热解产生的含氮中间产物2,5-哌嗪二酮(DKP)可分解为腈类、酰胺类和胺类化合物。用正则变分理论计算了 DKP分解过程中的反应速率常数。结果表明,在400-700℃范围内,菌渣生物油中HNCO的生成路径具有最高的反应速率,并且该路径中速率控制步骤的活化能为447.83 kJ/mol。由于脯氨酸R基团对分解的抑制作用,导致了菌渣快速热解生物油中的DKP类化合物主要是脯氨酸与另一种氨基酸反应得到的产物。为了进一步降低氮含量,在本研究中,探讨了金属氧化物含量为10 wt%的 M/HZSM-5(M=Fe,Co,Ni,Cu,Zn,Mo,Zr,Ag 和 Ce)金属催化剂对青霉素菌渣在快速热解条件下催化脱除N和O的影响。混合催化生物油中N 元素含量从 10.09 wt%降低到 Zn/HZSM-5(6.98 wt%)、Co/HZSM-5(7.1 wt%)和Cu/HZSM-5(7.18wt%)。而分层催化热解除了具有较好的脱氮效果外,Ag/HZSM-5,Mo/HZSM-5,Ce/HZSM-5 和 Fe/HZSM-5 能够将 O 元素含量从 9.77 wt%分别降低到 3.75 wt%、6.86 wt%、8.39 wt%和 8.54 wt%。