论文部分内容阅读
随着社会、科学技术进步及汽车行业的迅速发展,人们对汽车性能的追求越来越高,作为车辆行驶系统的重要组成部分之一,悬架系统性能好坏会对乘坐舒适性、操纵稳定性及行驶安全性造成直接影响。传统的被动悬架通过弹簧和阻尼元件共同作用改善车辆振动,但其结构参数固定不可变,减振效果受到限制;半主动悬架可以通过控制算法改变悬架阻尼或刚度系数,控制输出阻尼力,从而控制悬架性能,具有良好的减振效果,且与主动悬架相比,半主动悬架结构简单、耗能低、成本低。采用磁流变阻尼器(MRD)的半主动悬架性能优良,能达到与主动悬架系统性能相近的减振效果,且具有耗能低、响应速度快、输出阻尼力大、可调范围广且顺逆可调等优点,因此有重要的应用价值。建立能准确描述磁流变阻尼器力学性能的数学模型和设计半主动悬架控制策略是磁流变半主动悬架系统研究的两个核心问题,本文针对这两个问题建立悬架系统模型并进行数值仿真分析开展研究,主要工作内容如下:(1)介绍磁流变阻尼器的工作原理及工作模式,叙述磁流变阻尼器不同的力学模型及各模型的特点。利用INSTRON实验系统对课题组已有的MRD进行试验测试,分析其速度特性和示功特性,选择改进的双曲正切模型作为本次研究中MRD的数学模型,采用遗传算法进行参数辨识,并将仿真结果和试验值进行对比,结果表明,参数辨识得到的模型能很好地描述MRD的力学特性。(2)建立路面输入模型和1/4车辆半主动悬架模型,并确立系统状态方程,选择车身加速度、悬架动行程及轮胎动位移作为悬架性能的评价指标,分析悬架参数对悬架传递特性的影响。(3)设计模糊控制器及模糊PID控制器,并通过设计合理的模糊规则控制磁流变阻尼器的输入电流,从而控制阻尼器的输出阻尼力,最终实现控制悬架减振的作用,并在MATLAB/Simulink环境下进行建模仿真,结果验证了这两种控制方法均具有效性,且模糊PID控制效果更好。同时针对模糊控制规则制定具有依赖性和主观性,规则制定过程复杂且调试繁琐的缺点,提出一种模糊LQG控制策略,通过对比分析验证该方法与模糊控制和模糊PID控制相比具有更好的减振效果,在随机路面行驶时,车身加速度均方根值较被动悬架减小43.83%,具有更好的车辆平顺性及行驶安全性。