论文部分内容阅读
微F-P腔可调谐滤波器主要运用于超光谱成像、DWDM光通信系统和自适应光学等系统中。它有助于解决困扰传统滤波器体积大,功耗大,价格昂贵等缺点。微F-P腔可调谐滤波器除了体积小之外,还有光谱调节范围大,精度高,调制速度快,稳定性好等特点。特别在未来的空间目标探测系统中,微F-P腔可调谐滤波器可能是超光谱成像仪最佳选择的光滤波器件。随着微加工技术、微结构技术的采用,近几年发展起来的微光机电系统,为这项技术的突破带来了希望,采用微加工技术将硅薄片镀上金属,制成微F-P腔,结合微驱动装置,实现光束滤波性能。本文着重从基于硅基片上的10×5元单片集成微F-P腔可调谐滤波器阵列的设计和微制作两个方面开展理论和实验研究,主要内容包括:(1)系统地分析了微F-P腔可调谐滤波器的工作原理和结构特征,按照结构设计原则并结合本实验室实验条件给出了微滤波器的尺寸。并提出了一套完整的制作微滤波器的表面薄膜工艺,并用LEDIT软件设计了全套掩膜版。(2)利用ANSYS有限元分析软件模拟了微滤波器的电学和力学特性,得到了所设计的微滤波器单元的应力、临界电压、瞬态响应以及模态等参数,为微滤波器的设计优化提供了理论依据。(3)实验研究了微滤波器制作的各项工艺,重点研究了金属及介质微桥工艺和牺牲层工艺。在金属及介质微桥工艺中,通过对金属镀层的剥离(lift-off)、介质层的PECVD沉积以及RIE(反应离子刻蚀)工艺的大量繁复的实验研究,获得了微桥的优化工艺。在牺牲层工艺中,分析了作为牺牲层材料的光敏及非光敏聚酰亚胺的特性,通过优化后的光刻方法及湿法腐蚀法,分别在牺牲层上得到了理想的孔槽。同时通过调整聚酰亚胺膜退火条件使聚酰亚胺固化获得稳定的机械及化学性能,此外还研究了O2等离子去除牺牲层的工艺,获得了牺牲层的优化释放条件。(4)改善了离子束溅射镀Ni/Cr掩模刻蚀SiO2介质微桥以及电互连的工艺,获得更加均匀一致的金属镀层。