基于神经网络和时延估计的机械臂终端滑模控制研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:shwjdbr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着时代的发展,科技的进步日新月异,机械臂已在全球工业中得到广泛应用,成为现代化工业发展不可或缺的技术之一。机械臂是一个具有多输入多输出、强耦合、时变的非线性系统,机械臂的作业环境极其复杂,因此,设计出高性能的机械臂轨迹跟踪控制策略显得尤为重要。针对机械臂模型存在部分信息未知,不确定因素较多,以及外界扰动下,本问对机械臂轨迹跟踪控制问题进行了研究。基于终端滑模控制方法、时延估计策略、神经网络控制理论进行了如下研究:作为一种轨迹跟踪控制方法,终端滑模控制凭着有限时间收敛特性、受到参数变化时具有不变性,在机械臂控制领域中广泛使用。时延估计策略具有无需模型精准信息对模型的依赖小和易于应用等特点,引起了许多学者的关注。为此,本文结合时延估计策略和终端滑模控制方法,提出了基于时延估计的终端滑模控制策略。该策略采用时延估计方法对系统中存在的不确定性进行估计和补偿,以抵消其影响;同时应用终端滑模控制实现轨迹跟踪目的,并通过引进非线性项,设计了快速终端滑模面函数,减少了系统状态收敛到平衡点所需的时间。此外,本文还设计了鲁棒控制项克服了终端滑模控制器的抖振现象,并通过仿真验证了所提的方法的有效性。基于上述设计的控制器,引入了非线性项,该函数中带有负分数幂,当选择的参数不当且系统误差收敛到零时,此时会发生奇异现象,即出现某个信号状态无穷大;另外系统内存在短时变化剧烈的状态和因素时,时延估计也会引起较大的误差,从而降低了系统性能。针对该类问题,提出了基于神经网络的非奇异终端滑模控制策略。径向神经网络算法具有一些和时延估计类似的特点,且其能够避免系统局部最小值问题,考虑到传统径向神经网络采用的是权值自适应,需要的自适应个数较多,且控制结构较复杂,导致其求解速度较慢,继而设计了少量虚拟辅助参数替代神经网络权值,改善了神经网络逼近求解速度,优化了控制器结构。然后,通过等效控制原理设计了自适应非奇异终端滑模控制器;同时添加了鲁棒项去除终端滑模带来的抖振;并利用李亚普诺夫稳定性理论证明了所提控制器的闭环稳定性,最后通过仿真验证了所提方法的轨迹跟踪性能。
其他文献
随着互联网的快速发展,数字时代正式到来,数字技术也逐渐渗透到人们生活的方方面面。在数字时代下,人们获取到信息越来越多,面对繁多的信息,人们难以拿出更多的时间去提取和处理其中有效的信息。而数字图像却能很好的解决了这个问题。图像承储的数据量大而集中,能轻松的让人们提取出想要的信息。正因如此,数字图像已经成为互联网上主要传输的信息,因此,数字图片也成为了非法攻击者的首要攻击目标。我们发送的图片在开放网络
期刊
借助超声图像辅助医生诊断甲状腺结节良恶性,对甲状腺癌患者的早期治疗有重要意义。针对当前超声图像质量差和样本少、结节深层特征交叉难提取、良恶性识别率不高、先验知识利用不足等问题,提出多任务深度学习下的甲状腺结节良恶性超声辅助诊断模型。课题主要研究内容和取得的阶段性成果如下。首先,开展改善数据集质量的研究。对原始超声图像进行预处理,提取甲状腺超声图像的感兴趣区域,再去除人工标记实现降噪,并选取加权自适
能源是一个国家的战略储备资源,是人民生活和经济发展的重要物质基础。随着人类对自然资源的大量开发利用,全球环境污染和能源短缺的问题也日益加剧,发展清洁、高效的能源已刻不容缓。在目前能源革命的环境下,分布式能源也得到了迅速的发展。微电网(Microgrid)是能源互联网的重要组成部分,它能将分布式电源、负载、储能设备以及电力电子装置组合成一个单元的形式连接到电网中,有效地促进了分布式能源的发展。冷热电
当前对垃圾的处理流程通常是居民将生活垃圾丢到垃圾桶中,环卫工人清理然后运送到指定的处理厂进行焚烧或者填埋。这样就会导致部分可循环利用的资源没有得到充分的使用,同时也对环境造成了巨大的污染。然而在居民丢生活垃圾的是对垃圾图像进行分类并将对应的垃圾放入对应的垃圾箱中,这样能够将有用垃圾提出来加以利用,这样处理的优势有:资源得到循环利用、环境污染减少、人工成本降低等。对垃圾图像进行垃圾分类,垃圾种类是固
双目3D图像传感器仅能采集单个方向的立体对视频图像,无法获得全方位的深度信息,为此本文提出一种全向3D图像传感器,能够同步采集前后左右四个方向的立体对视频图像,经过硬件逻辑算法处理后,全向3D图像传感器能够输出八目同帧视频图像,也能够直接输出裸眼3D视频图像。本文完成的主要工作如下:(1)规划了全向3D图像传感器的空间布局。使用四组双目3D图像传感器布置于前后左右方位,从而构成具有全方位视野的全向
大脑状态时时刻刻在发生变化,因而脑电(electroencephalography,EEG)信号是非平稳的。新的用户在使用一个脑机接口(brain-computer interface,BCI)之前,必须经过冗长的训练采集EEG数据,用于构造BCI的分类模型。这限制了它的实用性。迁移学习是减少BCI训练时间的有效方法。通过将以前用户的实验数据迁移到一个新的用户,作为训练数据构造他的分类模型,从而减
说话人识别是根据说话人语音信号中的个性特征来辨认出说话者身份的一种生物识别技术。说话人识别系统的性能可以从多个方向来提升。例如从说话人的语音特征中选取出足够重要的特征来提升特征的可区分性;也可以使用性能较好的损失函数来训练特征提取网络。本文利用注意力模型和多度量学习来提升说话人识别系统的性能。本文的主要工作如下:1)提出了频带注意力(Frequency Band Attention)模型来对说话人
短期负荷预测是电力调度部门的一项重要工作,是安排发电机组启停的主要依据。准确的短期负荷预测可以减少电能损失,提高供电质量,因此提高预测的精确度是研究人员的重点工作。人工神经网络具有强大的非线性逼近和自主学习能力,是目前短期电力负荷预测的热门方向之一。以某地区1-6月电力负荷数据为仿真数据集,首先对数据集进行了预处理,包括缺失值补充、异常值修正和归一化处理,然后分析了负荷变化的周期性特征,并且采用自
遗留物检测作为视频监控的关键支撑技术之一有着广泛的应用。现有方法在部分场景中能够满足视频监控的需求,但仍然存在着一些问题,主要体现在以下方面。(1)传统遗留物检测算法存在着复杂场景下不能很好地解决光影变化问题,基于深度学习的遗留物检测则存在着神经网络的参数量较多问题;(2)此外,现有的基于分布式的遗留物检测在应对紧急情况,如部分服务器宕机、区域性停电等问题时,不能将剩余的服务器资源应用在更重要的任