加权分数傅立叶变换的采样研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:saintjob
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分数傅立叶变换是经典傅立叶变换的推广,当分数阶数从0逐渐增大到1,信号的分数傅立叶变换提供比经典傅立叶变换丰富得多的信号时-频联合表达形式,为信号处理准备了广泛的选择余地。特别是在光学信息处理的研究中,光学分数傅立叶变换提供信息的非焦面处理能力,为光信息处理带来了极大的方便,将光学应用推广到一个崭新的领域。分数傅立叶变换具有多样性。迄今为止,有关研究人员已经研究出了多种类型的分数傅立叶变换,例如标准chirp类分数傅立叶变换,标准加权类分数傅立叶变换,广义chirp类分数傅立叶变换,广义加权类分数傅立叶变换等等。实际上,分数傅立叶变换的多样性主要是由傅立叶变换的特征值在构造分数傅立叶变换时可采取不同的分数化方法所决定的。  本文研究了加权分数傅立叶变换域带限信号的采样与重构问题。基于一维加权类多参数分数傅立叶变换的定义,给出了一维加权类多参数分数傅立叶变换域带限信号的采样定理。这个新的采样定理是经典Shannon采样定理的推广,并且包含傅立叶级数展开作为特殊情况。然后,基于二维加权类分数傅立叶变换的定义,给出了二维加权类分数傅立叶变换域带限信号的采样定理。最后,数值模拟验证了所得结论的正确性与有效性。
其他文献
随着科学技术的发展,非线性现象在自然科学和社会科学领域的作用越来越重要,物理、化学、生物、工程技术,甚至社会的经济问题都存在着大量的非线性问题,这些问题的研究常常能用非
安全多方计算在1982年由Yao首次提出,发展至今已成为密码学的一大研究热点,具有重要的理论研究意义和实际应用价值。本文对安全多方计算中保密判定空间位置关系和多方保密计
论文主要研究了带有马尔科夫切换的区间线性系统,给出了区间系统稳定性的定义,即鲁棒稳定性。当给定系统不稳定时就产生了区间线性系统的稳定化问题,即本文的研究内容。  论文
概率极限理论是概率论的主要分支之一,也是概率统计学科中极为重要的理论基础,研究随机变量序列和的极限对于搞清楚随机现象的本质有着极其重要的意义。经典的极限理论,主要是以
时滞微分方程分支现象广泛存在于自然界中,例如物理、工程、生物学、医学及经济学等领域。分支现象可发生在依赖于参数的系统。Hopf分-支是一类与系统平衡点的稳定性及周期解
近年来,随着科学技术的发展,差分方程理论在现代物理学、生物学、经济学和控制工程等领域中有着非常广泛的应用。差分方程的振动性理论、渐近性理论和正解存在性理论,是差分方程
在血液生产系统中,有关红血球细胞的生产、发展和成熟的模型具有很好的研究价值。1989年Grabosch和Heijmans提出的一类无结构红血球细胞数量模型,描述细胞生长、变异和死亡规律
线性保持问题是矩阵论研究领域中一个重要的课题,刻画矩阵集之间保持某些函数、子集、关系、变换等不变量的线性算子的问题被称为“线性保持问题”。近几十年来,保持问题已成
本文介绍了一种求解Maxwell方程的小波数值方法——自适应小波配点法。该方法基于第二代小波的基础,结合配点法思想,将小波压缩用于网格的自适应和插值,而将具有小波多水平分解
从明暗恢复阴影方法(Shape from shading, SFS)是计算机视觉中被动三维测量技术的重要方法之一,广泛应用于工业生产线自动化测量、医学、地形测量及月球或星球表面形状恢复。