论文部分内容阅读
小波变换是时域和频域的局部变换,通过伸缩和平移对函数进行多尺度的细化,能够同时提供时间和频率信息.近年来,小波变换在数值分析、函数逼近等数学领域,以及滤波、图像识别、图像压缩等信号处理领域中得到了广泛应用.Riesz变换是奇异积分,是Hilbert变换在高维情形下的推广.如何利用时间域采样恢复Hilbert变换以及Riesz变换,是个具有理论和实际应用价值的问题.目前,Hilbert变换的采样恢复研究已经取得了诸多成果.然而,基于时间域采样来恢复Riesz变换的相关研究并不多见.本论文基于箱样条以及小波多尺度采样,建立Sobolev空间Hs(R2)上函数Riesz变换的恢复方法,其中s>1.一些函数的Riesz变换是连续的,但是基于样条Riesz变换的逼近公式在某些点处有数值奇点,因此,消除数值奇点很必要.本论文主要内容如下: 第一,由于箱样条具有显式表示,它在数值分析中得到了广泛的应用,此外,二阶基数箱样条B2具有加细性.本论文将给出B2的Riesz变换的显式表达式,并基于箱样条的逼近公式,建立Sobolev空间Hs(R2)上Riesz变换的恢复方法,给出相应的恢复误差估计. 第二,一些函数的Riesz变换是连续的,但RB2在某些点处有数值奇点,消除数值奇点尤为重要.本论文建立多尺度采样逼近的平移扰动误差估计,利用扰动逼近系统,给出消除数值奇点的自适应方法. 最后,分别对不同函数进行数值仿真实验,以此验证恢复效果.