英文手写体识别技术优化方法研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:sweetmeimei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
手写体识别技术研究由来已久,识别效果也逐步提高,但迄今为止仍然存在很多未解决的问题,尤其是在一些实际的应用场景中,手写过程中不可避免产生的涂抹书写对传统手写体识别过程产生了极大的干扰,增加了识别难度,降低了识别准确率。即便现有针对涂抹书写的研究通过增加涂抹书写模块来提高识别准确率,但因此所增加的训练、识别环节在时间和资源方面的开销极大,从而导致了识别效率的急剧下降,产生难以调和的矛盾。
  为解决实际应用中因涂抹书写导致识别准确率下降问题,并兼顾识别效率,考虑到传统手写识别模块本身所具有的图像识别功能,可同时对涂抹书写和正常书写进行识别,并通过对涂抹书写的结果使用特殊字符标记以便区分,从而解决因涂抹导致识别准确率降低问题。同时该方法将涂抹书写的识别和处理过程融入到文字识别模块中,由此而增加的各类开销和代价较低,对识别效率的整体影响较小,从而达到实际应用的需求。
  为进一步提高识别准确率,考虑在传统识别流程中增加后处理模块。目前基于置信度的方法具有一定的优越性,但存在拒识率高的缺陷。实际应用中,高拒识率意味着高人力成本和低处理效率,因此考虑将字典引入到置信度计算过程中,以达到在相同识别准确率基础上降低拒识率。
  实验结果表明,本课题所提出的针对手写体涂抹文字的识别方法,即提高了识别准确率,又保证了识别效率,同时在后处理过程中降低了拒识率,达到了降低后处理成本提高处理效率的目的,整体识别效率也得到了有效提升。本课题所研究的方法具有一定的理论研究价值和较高的实际应用价值。
其他文献
随着互联网的飞速发展,数据库的应用也越来越广泛,推动着数据库性能不断优化。数据库的查询优化是数据库性能优化研究的一个重要分支,其中表连接顺序的优化几乎是所有数据库查询优化器的核心,其目的是尽可能生成执行时间更短的查询计划。由于数据库代价模型、维护的统计数据的不准确,以及连接顺序搜索算法的局限性,现有的数据库管理系统经常会错过执行时间更短的表连接顺序。  针对上述问题,提出了一种基于机器学习和蒙特卡
新兴移动应用如虚拟现实/增强现实、车联网、人工智能、高速视频流等往往要求超低的服务延迟,传统的云计算服务架构难以满足日益严苛的用户需求。边缘计算通过将资源和服务向边缘下沉,以就近执行用户任务,可以有效缓解用户设备本地计算资源不足的问题,同时避免与远端云的数据传输,从而极大地降低服务延迟,已被视为未来网络的支撑性技术之一。  然而与远端云相比,边缘云计算资源仍是有限的。如何合理地选择任务进行卸载,并
学位
随着人工智能技术的发展,人们对对话系统的期待更多转移到沟通交流的需求。情感是影响人际沟通的重要因素,具备情感认知与表达的能力是智能的更高层级表现,其能够从更深层次理解与满足人类需求。然而目前大多数对话生成研究致力于提升回复的多样性与流畅性,忽略了情感表达的要求。融合情感认知的对话生成方法研究以对话中的情感信息为切入点,通过预测与表征对话文本中的情感信息,使对话系统具备情感感知的能力,然后将情感信息
学位
云计算是信息时代的重要发展趋势和国家重大发展战略。近年来,全球性的网络安全事件频发,而云环境由于虚拟机同质化等缺陷,用户隐私数据安全问题更加突出。在发生安全问题后,隐私侵犯取证成为大量企业和用户进行法律维权首要面临的难题。目前虚拟环境中隐私侵犯取证研究还不完善,主要存在两个问题:一是受限于特定或单一的指令集架构、操作系统或产品;二是细粒度的实时监控会给客户机带来过大的性能开销。  针对上述问题,虚
学位
RDF(Resource Description Framework)作为描述Web资源的标记语言,因其结构简单表达灵活的特性常用于表示图数据。SPARQL(Simple Protocol and RDF Query Language)是W3C(World Wide Web Consortium)推荐的标准RDF查询语言。随着RDF数据规模的急剧增长,如何高效响应SPARQL查询成为当前RDF图数
学位
内存计算系统(例如Spark)已经广泛用于处理工业界的海量数据。为了提高这些系统的计算效率和鲁棒性,系统开发人员为用户提供了许多高度可配置的参数。由于高维度的参数空间和复杂的参数交互作用,手工调优这些参数既耗时又低效。因此,用户急需一种内存计算系统的参数自动调优方法。目前参数自动调优常用的方法是基于机器学习的方法(Machine Learning-based, ML-based),ML-based
学位
图计算是大数据领域的主要处理模式之一,在生物信息网络、网页排名等领域有着广泛的应用。研究表明,图计算在传统中央处理器(Central Processing Unit,CPU)和图形处理器(Graphics Processing Unit,GPU)架构上存在着负载不均、不规则通信以及随机访存等突出问题,性能和能效水平受到较大影响。现场可编程门阵列(Field Programmable Gate Ar
学位
随着互联网的飞速发展,数据的增长速度也在急剧增加,将所有的数据存储在本地磁盘已经无法满足数据的需求,越来越多的公司和个人用户选择将数据存放在云上。为了数据的正确使用,用户需要确保从云端获取的数据是完整的。因此,如何检验存储在云上数据的完整性就成为一个重要问题。传统的云存储中数据完整性验证框架通过引入第三方认证机构(Third Party Auditor, TPA)来完成验证工作。由于该框架完全依赖
学位
传统计算机处理架构面临着严峻的“存储墙”挑战,随着现实世界中图数据规模的急剧膨胀,难以满足图计算高带宽、低延迟、大容量的现实需求。通过电阻式随机存取存储器(ResistiveRandomAccessMemory,简称ReRAM)的存内计算硬件将计算单元集成到内存单元中,为解决上述问题提供了可能。考虑到电阻式随机存取存储器中采用以矩阵结构为元粒度的组织方式,因此,在处理度数服从幂律分布的真实世界图数
学位
在边缘环境下,由于监测部署成本高、测量可靠性低等原因,数据稀缺性成为一个普遍难题。迁移学习非常适合解决此类问题,其基本思想是通过任务之间共享知识来解决数据量不足的任务训练问题。然而,目前多任务迁移学习系统对于资源受限的边缘设备来说过于复杂,原因在于:首先,机器学习模型本身就是计算和通信密集型的;其次,为了避免模型过时、且利用最新数据,需要对每一个任务从头开始反复训练。在这种场景下面对计算复杂性的挑
学位