论文部分内容阅读
如今信息技术飞速发展,大规模集成电路(IC)的制造对衬底硅片的要求也越来越高,为了提高IC整体性能,硅片加工工艺在硅片的表面状态、微观平整度等方面的要求都已经达到纳米级。硅片表面的微观平整度和表面状态主要由抛光过程决定,而抛光的结果又受到很多因素的影响,其中关于硅片性质对抛光结果的影响研究较少。本文主要通过选取应用广泛的不同掺杂浓度的重掺硼、重掺砷、重掺锑三种硅片进行抛光加工,并在抛光后进行清洗,探究不同掺杂浓度、不同掺杂剂的硅片对抛光去除速率及抛光后表面微粗糙度的影响,并由此探讨硅片掺杂剂浓度及种类不同对抛光去除机理的影响,依据去除机理的理论知识,在抛光实验后又提出了改进掺硼硅片表面微粗糙度的方法。实验中保持抛光时间相同,抛光液及抛光垫状态一致,使抛光结果的差异性与抛光时间、抛光压力、转速等抛光工艺参数无关。实验结果显示p-Si的掺杂浓度越大,抛光去除速率越小,抛光后的表面微粗糙度越大,表面微观平整度越差;掺杂浓度相同的p-Si的抛光去除速率低于n-Si,而表面微粗糙度高于n-Si。由于化学机械抛光技术的去除原理主要由硅片表面与碱性抛光液发生化学反应及抛光垫和抛光磨粒摩擦去除反应生成物两个方面组成,在抛光压力、转速完全一致的情况下,机械作用对不同硅片的作用效果基本一致,产生抛光去除速率及抛光后表面微粗糙度差异的主要原因是不同硅片与抛光液之间的化学作用受到掺杂剂浓度及种类的影响。直拉硅单晶的本征缺陷在引入不同的杂质原子时会与杂质原子进行相互作用,使抛光前的硅片表面形成微缺陷,造成杂质原子团聚。抛光时,这些微缺陷使硅片表面形成局部微电池,进行局部电化学反应,其中阳极反应为:Si+6OH-→SiO32--+3H2O+4e-,阴极反应为:2H++2e-→H2↑。p-Si中掺有大量B,B参与电化学的阴极反应,使其反应速率下降,从而令抛光时的化学反应速率下降,不仅导致掺B硅片的抛光去除速率低,还会使抛光时的机械作用与化学作用的匹配程度降低,令硅片抛光后的表面粗糙度增大;而n-Si中引入的杂质原子在其中起到的作用刚好相反,使硅片在抛光时的化学反应加速并与机械作用更好地匹配从而使硅片抛光结果更好。从上述分析出发,降低p-Si抛光液的pH,使电化学的阴极反应与阳极反应相对平衡,抛光时的化学作用与机械作用相匹配,结果p-Si抛光后的表面微粗糙度降低,表面微观平整度有所改善。