【摘 要】
:
时代发展到今天,创新驱动发展已经成为国家战略,而设计创新是创新驱动发展的重要组成部分。设计创新离不开思维与方法,基于未来视角的创新设计思维是实现方法中的一种。本文以产品设计为研究对象,对具有前瞻性、探索性、预测性特征的未来设计思维进行了较为全面的梳理,在比较了自然科学、人文科学中部分学科对“未来思维”认知的基础上,对未来设计的相关概念进行了再认识,进一步确认了未来设计思维的思维路径:以终为始的“终
论文部分内容阅读
时代发展到今天,创新驱动发展已经成为国家战略,而设计创新是创新驱动发展的重要组成部分。设计创新离不开思维与方法,基于未来视角的创新设计思维是实现方法中的一种。本文以产品设计为研究对象,对具有前瞻性、探索性、预测性特征的未来设计思维进行了较为全面的梳理,在比较了自然科学、人文科学中部分学科对“未来思维”认知的基础上,对未来设计的相关概念进行了再认识,进一步确认了未来设计思维的思维路径:以终为始的“终点思维”、梳理因果的“布局思维”、寻觅机会的“复合思维”;从造物组合、系统组合、资源牵引三个方面分析了产
其他文献
养殖塘作为淡水养殖水体以及内陆小型水体的重要组成部分,是CH4排放的热点。准确评估淡水养殖塘水-气界面CH4通量的时间变化特征及其环境人为控制机制有助于降低当前内陆水体碳平衡估算的不确定性。本研究选取中国淡水养殖塘分布最为集中的长江三角洲区域内----安徽省滁州市全椒县官渡村一处大片养殖塘作为研究对象,基于涡度相关法(Eddy covariance,EC)、通量-梯度法(Flux-gradient
交直流混联的多能微网可充分发挥多类异质能源互补共济和交直流混合供用电的综合优势,提高可再生能源的利用率,同时可针对用户对不同品位能量的需求,通过能源梯级利用,有效提高能源的综合利用效率。然而,交直流混联的多能微网具有交直流混联、多时空尺度、多重不确定性、多类异质能流深度耦合且各类能源用户需求各异等特点,多重复杂因素的影响大大增加了交直流混联的多能微网调控的难度。鉴于此,本文以国家“863”计划课题
高比例的可再生能源不断渗透到虚拟电厂中,其出力的随机性和波动性对虚拟电厂的优化调度提出更高的要求。电力系统与供热系统能量转换与信息交互日益频繁,大力发展热电联产虚拟电厂一方面是聚集各类分布式能源机组实现协同调度的有效手段,另一方面是深化电力改革、优化经济结构的重要支点。在热电联产虚拟电厂系统运行规划过程中,传统的电力系统运行方式与利润分配不利于可再生能源消纳以及各利益主体积极性,亟需建立一套切实可
随着氨选择性催化还原(NH3-SCR)脱硝催化剂役龄的增加,燃煤电厂的氨逃逸问题日渐凸显,已被认为是影响烟气处理系统正常运行的重要因素,另外,燃煤电厂是主要的人为汞排放源,其烟气中汞的排放会造成全球性污染,严重危害人体健康。在该背景下,对逃逸氨及烟气汞排放的严格控制迫在眉睫。将单质汞(Hg0)催化氧化为易于被湿法脱硫装置(WFGD)脱除的氧化态汞(Hg2+)是降低烟气汞排放的重要措施,但由于NH3
能源是社会进步和人类生存的物质基础,随着能源资源约束日益加剧,绿色低碳发展成为我国经济社会发展的重大战略和生态文明建设的重要途径,我国亟需加快建设以可再生能源为主导的清洁低碳、安全高效的能源体系,实现“30·60”双碳目标。电力工业在现代能源体系中处于核心地位,在减少温室气体排放方面发挥着重要作用,应加大力度发展以风电、太阳能为代表的绿色电力。但由于中国风能、光能富集区与需求区逆向分布,市场在优化
德氮吡格(Tetrazanbigen,TNBG)是一种原创性新构型的脂毒性抗肿瘤化合物,含有四氢异喹啉和喹喔啉结构,具有良好的体内外抗肿瘤活性,与其他常用抗肿瘤药物无交叉耐药性。经体内外实验显示TNBG能激活肿瘤细胞过氧化物酶体增殖物激活受体γ(PPARγ)和SRRBPs加强脂质合成,抑制脂质转运,引起肿瘤细胞内脂质聚集,导致肿瘤细胞“脂毒性”。但是,TNBG水溶性较差,限制了其成药性。目的本文以
盆式绝缘子的绝缘缺陷一直是造成GIS设备故障的主要原因之一,而目前基于电气特征量的绝缘状态评估方法尚不能提供足够的准确度与可靠性,特别是针对GIS盆式绝缘子潜伏性及发展性绝缘缺陷的可靠探测和剩余寿命评估,迫切需要探索更有效的检测与表征方法,这给科学研究提出了实际应用需求和新的技术挑战。作为现有电气检测技术手段的拓展,基于绝缘材料热动力学本征属性的活化能研究,为上述问题提供了可能的解决方法与技术途径
当前,全球经济社会发展正在经历从要素驱动到创新驱动的根本改变,欧美日等发达国家及我国均已将创新驱动、提质增效上升为国家发展战略。近年来,随着一大批创新型企业的兴起(如苹果、小米、海尔、特斯拉等),越来越多的学者提出,技术能力和市场能力构成了经典创新耦合模型的基础,但除此之外,还存在第三种创新驱动模式——设计驱动型升级。自2000年起,众多国家制定了国家层面的设计政策与发展体系,其中,不乏将设计产业
碳化硅(SiC)被广泛地认为是一种极具潜力的事故容错燃料包壳材料,它被考虑用在下一代核反应堆中。相关的研究表明氧化是碳化硅材料在高温环境下发生功能失效的主要原因。因此,探明碳化硅在不同条件下的氧化机理对碳化硅包壳材料的研发和设计工作具有重要意义。本文以核工程领域常见的3C-SiC和6H-SiC为研究对象,借助密度泛函理论计算、经典分子动力学模拟以及从头算分子动力学等方法系统地研究了这两种碳化硅在抗