【摘 要】
:
熔丝制造(Fused Filament Fabrication,FFF)是目前应用最广泛的3D打印方法之一,但受到打印装备自由度和工艺规划方法的限制,传统的FFF平台仅能在一组平行平面上沉积材料,层内和层间机械性能差异明显,且容易产生阶梯效应,这些问题成为限制FFF进一步推广的瓶颈。为解决上述问题,本文基于工业中广泛应用的机械臂构建了一个多自由度FFF系统,通过多自由度的曲面打印提高打印物体的表面
【基金项目】
:
中国与奥地利合作项目“生物纤维或颗粒增强的热塑性塑料沿着载荷方向的高效3D打印”(FFG No.860384);
论文部分内容阅读
熔丝制造(Fused Filament Fabrication,FFF)是目前应用最广泛的3D打印方法之一,但受到打印装备自由度和工艺规划方法的限制,传统的FFF平台仅能在一组平行平面上沉积材料,层内和层间机械性能差异明显,且容易产生阶梯效应,这些问题成为限制FFF进一步推广的瓶颈。为解决上述问题,本文基于工业中广泛应用的机械臂构建了一个多自由度FFF系统,通过多自由度的曲面打印提高打印物体的表面质量和力学性能。系统包含工艺路径规划、运动机构和材料挤出部件三个部分,提供从输入模型处理、路径规划、机器人控制代码和材料挤出控制代码的自动生成,支持常规热塑性材料和纤维增强材料的打印,并适用于不同型号的机器人平台。具体工作包含以下几部分:1)在基础平台方面,提出一个通用工业多轴机械臂FFF系统平台与相应的多自由度3D打印工艺流程。通过设计安装在臂末端法兰盘的扩展式挤出机插件,使平台支持常规聚合物和纤维增强材料。2)在工艺规划方面,针对多自由度打印提出一种空间连续路径规划方法,该方法首先将原始模型进行适当的扁平化变形并获得变形映射,然后在变形后的模型内生成基于费马螺线的连续路径,最后通过映射关系将其转换为空间曲面上的连续打印路径。该方法不但提升了打印物体的力学性能和表面质量,而且保证了机械臂FFF系统运行的平稳性。3)在控制方法方面,为保证对沉积材料位置与材料挤出速度进行精确的同步控制,平台使用了机械臂和挤出系统并行控制的架构。同时,为避免与打印工件碰撞,设计了一种末端位姿规划方法,保证机械臂末端的材料挤出与打印表面垂直。本文基于UR3机械臂搭建了多自由度FFF系统原型,针对平台与工艺分别展开实验测试。实验表明空间连续的路径规划使得该平台能够进行多自由度连续纤维增强材料的打印,且无需切断装置。相对传统FFF工艺,在针对特定弯曲结构的力学测试中,使用空间曲面路径规划打印的结构抗拉载荷最高提升了167%,横向弯曲载荷最高提升了38%。
其他文献
近年来,通信系统的更新换代速度非常迅速,在第七届世界军人运动会上,5G通信已经开始崭露头角。滤波器作为通信系统中的关键的选频器件,对通信系统的性能好坏起着决定性作用。双通带滤波器,其具有两个可以同时工作的通带,可以满足5G通信系统的大容量、多频段通信的需求,因此获得了国内外学者的青睐。做为波导与微带线的完美的结合体,基片集成波导表现出高的功率容量和低的损耗,因而被广泛地应用于各种滤波器的设计。本论
谐振子作为物理学的经典模型,在物理学的各个领域均得到发展。近几年,在广义不确定原理和弯曲时空背景下谐振子的研究逐渐成为热点。本文就广义不确定原理及Som-Raychaudhuri时空下谐振子模型研究进行了两部分内容的讨论:·研究了广义不确定原理下DKP谐振子和含线性势的DKP谐振子。通过广义不确定原理下动量和坐标的转化得到了DKP谐振子的表达式,使用合流超几何方程确定了体系的能级,并借助数值分析对
偏微分方程及其最优控制理论在金融、物理、地震学等领域有着广泛的应用.近年来,学者在确定型偏微分方程最优控制理论相关研究方面取得了许多成果.然而,由于现实环境处于不断变化的过程中,这使得在具体求解问题时会受到随机因素的影响,确定型偏微分方程最优控制问题模型显然已经无法准确的描述现实问题.因此,随机最优控制问题及其理论分析成为了当前的研究热点.本文针对扩散项带随机系数的抛物方程最优控制问题的数值求解,
近年来,猪场发生细菌病问题越来越突出,在排污水中检测到大量的细菌存在,由于用药不合理和管理不规范,部分养猪场使用广谱药物进行细菌病防治,使得细菌耐药菌株增多,耐药性越来越复杂,不但对猪场环境造成污染,也会对细菌病的临床用药防治带来困难,同时制约养猪业的健康发展和影响公共卫生安全。本研究首先对贵阳市花溪区5个规模化养猪场主要疫病进行调查分析,其次对猪场排污水进行细菌分离鉴定、致病性和主要分离菌的耐药
蒸汽不但是一种利用率较高的清洁能源,而且对稠油热注开采等行业的作用也较大,其质量流量的计量准确与否对降低蒸汽的质量管理成本和提升生产效率均有极大影响。如何研究稠油井环境下蒸汽流动的动力学特性,探讨油井出口端的蒸汽质量流量计量算法,已成为稠油企业及相关研究人员关注的重要难题。为此,本文在综合考虑蒸汽流量计量中涉及的蒸汽液化、热量损失、设备成本、测量环境限制等因素下,以质量流量计量的准确率为性能指标,
近年来,基于大环(例如环糊精、杯芳烃、瓜环及柱芳烃等)和纳米材料(如石墨烯,g-C3N4,金属纳米等)制备的复合材料现已用于各种领域,尤其是超分子传感器领域,该复合材料结合了大环及纳米材料的优点,改善灵敏度和选择性。因此本论文构建了化学传感器,主要用于检测敌草快和氯霉素。通过原子力显微镜(AFM),红外光谱(IR)和拉曼光谱的全面表征,合成了Benzo[6]uril杂化氧化石墨烯复合物,将该复合物
随着分布式能源渗透率的提高以及高品质负荷日益增加,对网源荷协同控制的技术需求日趋迫切。然而,传统配电网的“闭环设计、开环运行”结构不能友好接入大规模分布式能源,难以满足重要负荷的高可靠性供电需求。柔性互联配电网作为一种新形态的供电结构,不仅可以形成闭环供电的新模态,而且提供了配电网层面的源荷协同技术平台。本文以柔性互联配电网的核心装备——柔性多状态开关(Flexible Multi-State S
强化学习算法是用于解决序贯决策问题的一类算法,与深度学习算法的结合推动了强化学习算法的发展。智能体通过与环境交互,增加对环境的认知,然后根据这些认知执行动作。“探索”是智能体在与环境交互过程中放弃当前最优行动,并通过执行其他行动增加对环境的认知以求获得长远利益的行为方式。提高所得策略的探索性能是强化学习算法面临的一个很大的挑战,而高效探索对智能体学到最佳策略起着关键性的作用。常用的提高探索性能的算
超分子传感器是基于分子或离子间通过一系列弱相互作用结合形成主客体化合物而构建的,因此作为主体的一系列大环化合物的发展备受关注。具有功能性空腔的有机大环常被用于超分子传感器研究,从最初的冠醚、到环糊精、杯芳烃、瓜环以及柱芳烃,主体大环化合物的发展十分迅速,并且在超分子传感器研究上起到重要的作用。这些大环分子可以作为电化学和光学传感器的受体,使其具有更宽的检测范围、更低的检出限和更好的抗干扰能力。近几
航空技术和传感器技术的发展为遥感图像的利用提供了有利条件,而遥感图像的语义分割技术是一个热门的研究方向,在自然资源监测、农作物提取、智慧城市建设以及道路提取等方面有重要意义。近年来,随着人工智能的迅速发展,使得AI遥感成为一个热门领域。本文使用深度学习方法对遥感图像的语义分割技术展开研究,设计出若干语义分割算法并在相关数据集上进行验证,得到了很好的分割效果,主要工作如下:一、基于全卷积神经网络,构