论文部分内容阅读
户外高压隔离开关是电力系统中最重要的电气设备之一,其电接触部位常常由于过热而失效,每年都造成大量的经济损失。本文以户外高压隔离开关触头为应用背景,采用电沉积法制备了银镀层与银石墨自润滑复合镀层,使用显微观察、扫描电子显微镜(SEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)、能谱仪(EDS)、热重/差热分析(TG/DTA)、红外碳硫分析、中性盐雾试验、Tafel曲线、摩擦磨损试验、扫描磨损轮廓等测试手段与表征方法,对银镀层与复合镀层的形貌、成分、生长机制、结合力、耐蚀性、抗硫性、热稳定性、耐磨性及磨损机制等进行了研究。 研究表明,由于石墨的尖端放电效应和电极表面扩散层的存在,银的生长受限,呈现出有择优取向的线性连结生长方式,使得复合镀层孔隙率比银镀层高。根据GB/T5270-2005,纯银镀层与复合镀层断口不起皮、不脱落,结合力良好;根据GB/T6461-2002,两种镀层表面均未出现腐蚀点与腐蚀坑,耐蚀性达到中性盐雾试验十级标准;根据QJ485-1988,两种镀层在Na2S溶液中浸泡半小时不变色,抗变色能力达到航空标准。 纯银镀层在室温~120℃表面发生氧化形成Ag2O,120℃~664℃银镀层氧化膜持续分解;室温~48℃为复合镀层的气体脱附阶段,48℃复合镀层中的水分开始蒸发,130℃时蒸发完全,160℃~521℃为石墨层间化合物的分解阶段,521℃~740℃石墨的碳骨架开始氧化。磨损试验表明,260 g载荷下纯银镀层的摩擦系数为0.342,复合镀层摩擦系数为0.075。复合镀层在小于260 g载荷下以磨粒磨损为主;随着载荷从260 g逐渐增加至860 g,疲劳磨损剥层开始出现,并且疲劳磨损逐渐成为主要磨损机制,同时磨粒磨损减少,复合镀层的摩擦系数始终保持在0.1以下。 随着沉积电流密度的增大,复合镀层中石墨含量增多,在1 M H2SO4溶液中的自腐蚀电流密度增大,耐磨性能先增强后减弱,0.3 A/dm2电流密度下镀层耐磨性最好。随着搅拌速度的增大,复合镀层中石墨的含量增大后减小,在1M H2SO4溶液中的自腐蚀电流密度先增大后减小,耐磨性能减弱,420 r/min搅拌速度下的磨损率最低,为8.13×10-14 m-3/N·m。