论文部分内容阅读
随着现代高技术装备的飞速发展,光电武器装备在侦察、监视、定位、导航和通信等场合的作用越来越重要。光电探测系统是该类武器装备的重要组成部分,且目标定位精度的要求越来越高。本文围绕如何提高光电探测系统的目标定位精度这个重要问题,重点在工作机理、目标定位误差分析建模和评价、指向误差修正、稳定误差抑制等方面开展工作,形成了较为完善、实用的光电探测系统误差分析和误差修正方法。论文的研究工作包含以下几个部分:一、分析了光电探测系统的总体结构、主要功能和工作模式。针对光电探测系统的稳定跟踪原理,进行了详细的运动学和动力学分析。同时,采用多体系统建模理论和全微分法,推导了光电探测系统的通用目标定位模型和误差传递模型,给出了各项误差因素对目标定位精度的影响关系。二、针对光电探测系统的目标定位误差综合建模问题,对各项误差影响因素进行了详细的定量化分析,推导了目标定位误差综合模型,避免了误差的多重建模,扩展了误差建模的适用范围。同时,根据误差分析和建模的结果,采用了基于Monte Carlo的误差评价方法,得到了各项误差因素的影响规律,以及在目标定位误差中所占的比重,对光电探测系统研制过程中的误差分配和优化设计具有指导作用。三、针对光电探测系统的高精度指向问题,深入分析了指向误差的修正原理和修正过程中需要解决的几个关键因素,提出了具有较明确物理意义的指向误差基本参数模型。同时,针对非线性误差因素的影响,提出了基于半参数回归模型的改进算法。通过仿真分析和比较,基于半参数回归模型的改进算法继承了基本参数模型的模型参数较少、辨识数值稳定、物理意义明确等优点,同时能够抑制非线性误差干扰,有效地改善了修正效果。四、分析了光电探测系统伺服控制回路中,陀螺性能和摩擦特性对稳定精度的影响。针对高精度和高带宽的惯性角速度信号问题,提出了一种基于MEMS陀螺和加速度计的最优惯性角速度估计算法,实现了陀螺的带宽拓展和噪声抑制,为系统小型化、轻量化、高精度发展提供一种新的思路。同时,针对伺服控制系统稳定回路中摩擦的影响,提出了一种基于切换结构的平台角速度估计算法,实现了稳定回路的双速度环控制结构,有效地改善了摩擦对稳定精度的影响。五、针对研制的某型光电吊舱,进行了室内的指向误差分离和修正实验。实验结果表明,基于半参数回归模型的指向误差修正算法能够较大幅度地提高指向精度。同时,针对研制的某型光电吊舱,进行了外场的目标定位实验,通过实验进一步验证了推导的通用目标定位模型的有效性和实用性。