论文部分内容阅读
紫精类光致变色杂化材料由于其特有的性质而受到越来越多人们的关注。主要原因在于紫精是良好的电子受体,受光照射后会发生电子迁移,而紫精的加入使其杂化材料表现出良好的光致变色性能。本论文选取过渡金属及镧系金属离子作为无机组分,以非对称紫精配体作为有机组分,利用尺寸效应和电荷匹配等因素将二者复合到同一体系,进而研究其优异的光致变色特性。本文详细阐述与分析了八个配合物的合成、结构及光学性能,尤其探讨了其光致变色的机理。本论文主要分为以下五部分:一、第一章简要介绍了紫精类光致变色材料的研究背景、进展及实际应用,详细陈述了光致变色配合物的变色原理,并展望了光致变色配合物的应用前景。二、第二章选用(HCPBPY).Cl及对苯二羧酸(H2BDC)作为有机配体,与过渡金属Cd盐通过溶剂热反应构筑了一对超分子异构体Cd(CPBPY)(BDC)(H2O)]n(1)和{[Cd(CPBPY)(BDC)].H2O}n(2)。化合物1呈现出(4,4)拓扑层,它是由Cd2 SBUs作为节点,BDC2-作为连接子,与向外伸出的CPBPY配体共同构筑而成。化合物2是由BDC2-和CPBPY两种有机配体连接单核Cd2+形成(6,3)拓扑层,进而构筑成4重穿插的3D网络结构。异构体1表现出可逆的光致变色和可控的发光性能,在空气气氛中着色的固态1a可以实现超长时间的电荷分离,这使其在太阳能转化为电能方面具有潜在的应用价值。然而,异构体2在紫外灯下光照两个多小时后仍没有表现出光致变色行为。三、第三章仍选用(HCPBPY).Cl作为有机配体,与不同的过渡金属盐及镧系金属盐通过溶剂热反应合成了四个光致变色的荧光金属有机配合物:[Cd(CPBPY)(BDC)(H2O)2](3),[Cd(CPBPY)(o-BDC)(H2O)2](4),[Cd3(CPBPY)2(BDC)3](5)和[La2(NO3)6(H2O)4(CPBPY)2.(H2O)2](6)。化合物3、4和6在空气中都呈现出可逆的光致变色和可控的荧光性能,化合物5只在惰性气氛中表现出光致变色行为。值得注意的是,着色化合物4a和5a在空气氛围中能够很快脱色,从而可以快速灵敏地探测氧气。四、第四章主要选用(HCPBPY).Cl及对苯二羧酸(H2BDC)作为有机配体,与过渡金属Zn,Cd盐在酸性条件下合成了两个荧光金属有机配合物:[Cd(CPY)2](7)和[Zn CPy](8)。化合物7和8不具有光致变色性能,主要是因为吡啶环发生了原位加氢反应。五、对本论文工作进行了总结,并展望了本课题的研究前景。