【摘 要】
:
2008年的金融危机,对全球经济造成振荡,与此同时,也让经济不确定性逐渐成为学者和政策制定者不容忽视的问题。不确定性的研究早已有之,但量化经济不确定性的困难阻碍了相关研究的进一步发展。现有的测度主要在国家的维度展开,测度的方法,根据所使用数据的不同,可以划分为基于统计指标的测度、基于主观意见的测度和基于媒体信息的测度。考虑到我国各省域之间的异质性以及宏观经济不确定性测度的研究趋势,本文旨在测度省域
论文部分内容阅读
2008年的金融危机,对全球经济造成振荡,与此同时,也让经济不确定性逐渐成为学者和政策制定者不容忽视的问题。不确定性的研究早已有之,但量化经济不确定性的困难阻碍了相关研究的进一步发展。现有的测度主要在国家的维度展开,测度的方法,根据所使用数据的不同,可以划分为基于统计指标的测度、基于主观意见的测度和基于媒体信息的测度。考虑到我国各省域之间的异质性以及宏观经济不确定性测度的研究趋势,本文旨在测度省域视角下的宏观经济不确定性,通过每日经济新闻网站以及慧科数据库中的新闻数据构建出各省域的新闻指数以表征经济政策的不确定性,选取我国31个省域的宏观经济的统计指标的数据以表征经济实际运行的不确定性。综合两类数据,使用分层动态因子模型和随机波动模型进行实证,测度出我国31个省域2003年1月到2019年5月的宏观经济不确定性指数,并分析了指数的波动情况和对应的事件,然后使用贝叶斯图形结构向量自回归模型研究了31个省域的宏观经济不确定性之间的依赖关系,最后通过广义预测误差方差分解技术对各省域的宏观经济不确定性指数的关联度进行测度。
研究发现:总体而言,各省域的宏观经济不确定性指数走势具有一致性,峰值出现在2008年,近期隐含上升的趋势,并且都受到宏观调控手段等多方面的影响。按照地理区划划分省域,华中地区和东北地区与各地区的共同趋势最为一致,西北地区和西南地区与各地区的共同趋势最不一致;华东地区和华北地区的区域内异质性最为明显,华南地区的区域内异质性最弱;在强异质性的省域中,交通领域的不确定性是西部地区的省域的异质性波动的主要来源,其他地区的省域的异质性波动主要受到工业领域不确定性的影响。各省域的宏观经济不确定性之间存在一定程度的动态依赖关系但与地理位置的关系不大,大部分省域的当期的宏观经济不确定性主要是受到自身先前的宏观经济不确定性的影响;同期依赖关系相对较弱,少部分省域的当期宏观经济不确定性不依赖于其他省域的当期宏观经济不确定性,在存在同期依赖关系的省域中,有向边的起源相对集中在较少的省域中。其中,海南省在依赖关系和关联度测度中均表现出对其他省域的强影响力。
其他文献
随着科学技术快速发展,人们在医学、生物学、经济、工业等各个领域获得的数据信息呈指数式增长,数据维数越来越高。变量选择是一种非常有效的高维数据信息提取手段,但传统变量选择方法存在一定的缺陷。Cox比例风险模型是一个半参数模型,在生存分析中占有重要地位,但其应用范围被制约在低维数据中。本文将线性模型下DantzigSelector方法和自适应DantzigSelector方法推广到Cox模型中,并研究
稳健性优化设计的目的是在追求系统输出最佳性能的前提下,尽可能地使不确定性对于系统输出值的影响程度最低,在实际生产中具有十分重要的意义。在现代的产品优化设计领域中,仿真模拟已经成为了设计优化领域中必不可少的手段。随着科技不断发展,仿真能够达到的精度也不断提升,但与之伴随而来的是时间成本与资源消耗的剧增。稳健性优化设计的应用也掣肘于这些实际成本问题。 近似模型能够代替昂贵的仿真模拟,同时保证初始问题
图像修复是利用人们已知的信息来对图像中结构化信息的缺失进行恢复的过程。在图像修复中,人脸修复是运用范围最广,使用场景最多的应用之一。随着现代物质生活水平的飞速提高,电子产品的不断更新换代,人们对于人脸图像的要求越来越高,但现有技术无法令人满意,且对于损坏面部图像处理的功能也并未普及。因此,人脸修复算法的研究具有极大的商业价值和潜在的社会价值。 深度学习方法在人脸补全方面能够捕获图像更多的高级特征
随着我国经济的快速发展,空气污染问题也越来越严重,影响了人们的身体健康和日常活动,因此利用数学模型来研究空气污染指数有着重要意义。 本文首先给出了一个随机微分方程来描述空气中污染物的动力学模型,并使用Euler–Maruyama算法对方程进行离散化,利用2014年至2017年间武汉市空气质量指数的数据,通过极大似然估计得到了方程的参数,并对未来两年的空气质量指数进行离散化模拟。之后,将随机微分方
分数Brown运动(FBM)在长记忆过程的研究中占据了极其重要的位置,特别是随着随机积分理论的发展以及Black-Scholes期权定价理论的形成,FBM在时序分析中的地位日益突显,成为自然过程和金融市场中常用的数学模型,方兴未艾的Hurst指数估计方法也成为人们关注的重点。 本文主要研究了推广的复合分数Brown运动以及Hurst指数的贝叶斯估计方法。本文首先介绍了FBM的各种性质、模拟方法和
本文综合统计分析方法、空间基尼系数、泰尔指数、空间面板等方法对2000—2017年全球人类发展水平空间差异演化及影响因素进行研究发现:①从2000年到2017年,全球HDI平均水平从0.630上升到0.717,增长了13.78%。但是从全球平均HDI增速来看,全球人类发展水平增速逐步趋缓。HDI三个分项指数值其绝对值由高到低依次为寿命指数、收入指数和教育指数。教育指数虽然得分最低,但增长最快,表明
近年来,随着人们消费观念的改变和互联网科技的进步,消费金融行业得到了蓬勃发展,越来越多的企业涌入这一领域。然而,在消费金融覆盖人群越来越广的同时,贷款欺诈现象也愈演愈烈。因此,在放贷过程中,对客户信用的鉴别显得格外重要,这也是风险控制中的重要环节。传统的风险建模运用了用户的大量信息作为协变量建立统计模型或机器学习模型,用模型的输出来判定客户的信用水平。但是在有些情况下,用于建模的协变量包含的信息可
数据时代的到来使得数据逐渐上升为国家战略性资源,作为数据的重要载体,数据库的经济价值也日益凸显。与SNA1993不同,SNA2008将数据库与计算机软件剥离开来独立作为一项固定资产进行核算,此变革正是对其经济价值不容忽视的认可。然而,令人遗憾的是即便数据库的经济价值已不可小觑,目前几乎所有国家实践中均未将其纳入核算,有些国家甚至未将其纳入本国核算体系。究其原因,不外乎数据库核算理论有待完善以及统计
随着大数据时代的到来,海量数据的出现,数据缺失的问题越来越严重。缺失数据给应用研究和统计分析带来了很大困扰。传统的统计分析方法不能直接应用到缺失数据的处理中,不恰当的处理缺失数据,会导致错误的结论。因此,缺失数据的处理一直以来都是统计学的前沿和热点问题。本文考虑缺失数据下转换模型的统计推断问题,我们采用逆概率加权光滑最大秩相关估计方法来估计转换模型中的感兴趣参数,并对所提出估计量的渐近正态性和相合
针对信用卡申请评分中的数据不平衡问题,本文提出了一种可以用于连续变量与分类变量混合的混合数据的欠采样方法——UMBKER。该方法可以在基本保持原有多数类样本数据分布特性不改变的前提下,有效地去除多数类样本中较为冗余的样本,从而达到降低数据不平衡率、减少不平衡数据对模型影响的目的。 UMBKER算法是一种适用于混合数据聚类的KAMILA聚类方法与去冗余算法相结合的欠采样方法。该方法先对数据集中的多