LiO-TiO复合氧化物及其在电化学储能器件中的应用

来源 :中国科学院成都有机化学研究所 | 被引量 : 0次 | 上传用户:livos
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着经济的发展和人民生活水平的提高,人们对安全、高效、经济、环保型的电化学储能器件的要求日渐迫切。混合型超级电容器是近几年引起极大关注和大力开发的一种由活性炭电极与氧化还原电极构成的新型电化学储能器件,它具有能量密度高、功率密度高、循环寿命长的优点,并且安全可靠、环境友好。本论文主要研究了锂离子嵌入型氧化物电极材料及其在混合型超级电容器中的应用。
   本论文将Li2O-TiO2二元氧化物系列作为研究体系,以通式Li2O(TiO2)x(x=1,2.5,3)代表的三种氧化物电极材料Li2TiO3、Li4Ti5O12和Li2Ti3O7为主要研究对象,研究其电化学性能及电化学应用特性。
   本论文从材料合成与制备条件的研究入手,考察了单斜相Li2TiO3、尖晶石Li4Ti5O12、斜方相Li2Ti3O7三种材料的物理特性和结构特性;以电化学性能研究为主,考察了以上三种材料作为锂离子嵌入型氧化物电极材料的嵌锂容量和循环特性;以电化学储能器件的研究为目的,考察了以上三种材料在电化学储能器件、特别是混合型超级电容器中的应用特性和应用范围。
   本论文首次采用水溶性高分子作为分散介质的前驱体制备的单斜相Li2TiO3电极材料,具有循环容量高和倍率性能好的特点。
   本论文采用的二次球磨与喷雾干燥技术路线具有原料和设备成本低廉、利于大量和连续提供优质样品的特点,所制备的次微米级尖晶石Li4Ti5O12电极材料,具有较好的大电流充放电的能力,综合性能较好。
   本论文首次采用溶胶-凝胶法制备热处理前驱体,得到了物理性能与电化学性能良好的斜方相Li2Ti3O7电极材料,并首次将其应用在混合型超级电容器中。通过对该电极材料的电极动力学过程的分析,证实了斜方相Li2Ti3O7因其特殊的晶体结构特点而具有优秀的大电流响应性能,可望在电化学储能器件、特别是混合型超级电容器中有良好的应用。
   本论文首次制备了新型聚合物混合型超级电容器器件,并对其应用特性进行了详细的考察。器件的性能初步达到了实用要求,所研发的小型卷绕式软包装器件(05×30×48mm3)的比能量值达到了5.5~6.5Wh/kg。
   通过本论文的研究,确立了物理性质均匀良好,电化学性能优良的Li2O-TiO2二元体系氧化物的制备条件;研究和总结了Li2O-TiO2二元体系氧化物在电化学储能器件中的应用特性和规律;对相关行业和科研机构的材料研发工作有一定的借鉴作用。
其他文献
本文基于现有车辆扫描法识别桥梁模态参数的不足,提出了应用极点对称模态分解从接触点响应中识别桥梁参数的方法。  本文基于一定假设推导了车桥互制系统响应的理论解,尤其得到了获得接触点的实际计算公式。后文分别从模拟和试验来对比和验证了基于极点对称模态分解方法对识别桥梁模态参数的性能。紧接着,基于车桥系统有限元的推导,通过一个典型例子进行了两种信号(接触点和车辆加速度)的比较。一方面,对提出识别频率方法的
学位
我国西南地区地质构造活跃,地震频频发生,并多次发生高强度地震,加上西南地区山地众多,地质条件复杂,这使锚固技术的发展迫在眉睫,锚索锚固技术也应时而生。相比较传统的锚固技术,锚索有着良好的抗震性能。不仅如此,锚索还可以和其他锚固方式进行组合,协同加固,在工程应用中有着广泛的应用前景。虽然锚索锚固技术在实际工程中已经广泛普及,但是地震作用下锚索锚固边坡的稳定性分析仍然处于初步发展阶段,缺乏一套成熟的、
学位
抗生素是一类新兴痕量污染物,被广泛用于人和动物的治疗,因其近年来在环境水体中被频繁检出而被日益关注。吸附法是去除水体中抗生素的有效方法之一,吸附剂是吸附法的核心,研发高效、经济、可持续利用的吸附剂具有重要的工程实践意义和经济价值。  有序介孔硅材料以其独特的孔道结构、均匀的孔径分布、高比表面积、化学惰性以及易修饰的孔道内表面等优点,在给水处理和废水处理中受到越来越多的关注。同时,与传统吸附剂的分离
学位
我国西南山区广泛分布着岩质边坡,这些边坡大多都位于岩溶强烈发育的地带,坡体内密布许多陡倾的节理面,且下方往往存在着地下开采活动,斜坡地势险要,坡面“上陡下缓”,坡体岩性“上硬下软”,上层硬岩多为碳酸盐岩层,在水的溶蚀作用下形成错综复杂的岩溶管道。在独特的地质环境与地下采矿活动的共同作用下,受岩溶水侵蚀和风化作用破坏的坡体极易失稳。因此对采动作用下岩质坡体变形特征的分析,将有助于地下开采诱发岩溶边坡
学位
预制工厂的建设是推行装配式建筑发展的重要环节。在预制工厂项目建设过程中,如何通过施工调度优化减少施工工期,降低施工成本和提高施工质量,一直是相关从业人员和研究人员共同面临的挑战。有关施工调度优化的大多数研究集中在优化算法的使用和模型的建立上,不同项目之间施工调度优化的差异性未被充分考虑,模型的实用性和可操作性较低。本文以预制工厂施工调度优化问题为研究对象,以施工工期,施工成本和施工质量为优化目标,
学位
海水淡化技术作为解决水资源短缺的有效途经,得到了越来越广泛的应用。反渗透(RO)具有能耗低、模块化程度高和操作弹性大等优点,已成为主要的海水淡化技术之一。对于沿海地区及岛屿,由于能源供应问题,风能等可再生资源和反渗透技术的耦合成为研究热点。但风速的间歇性和波动性给风能在反渗透海水淡化中的应用带来了巨大挑战。  根据风速不稳定性的特点,本文设计了混合风力发电机和柴油发电机驱动的反渗透海水淡化系统。首
酶是一种具有高催化效率和特异性的生物催化剂,但是,游离酶的低稳定性和难以回收再利用等缺点限制了其工业应用。固定化酶技术是提高酶稳定性和重复使用性最有效的方法之一,而载体材料的结构和表面性质影响固定化酶的性能。因此,本论文利用新型两性离子聚合物修饰固定化载体,以期提高固定化酶性能;进而研究了一种水溶性两性离子聚合物对各种酶活性和结构的影响。  首先研制了两种新型两性离子聚合物接枝的二氧化硅纳米粒子(
生物污损是指生物分子、微生物、细胞等在材料表面上的有害粘附,是光学透镜、医用器械、海洋设备等诸多领域共同面临的重要挑战。亲水高分子聚乙烯吡咯烷酮(PVP)中的吡咯烷酮单元可紧密结合水分子,涂覆于材料表面后可结合水分子从而形成水化层,同时由于其呈电中性,所以可有效消除生物大分子与材料表面之间的静电作用力和疏水作用力,形成抗生物粘附界面。本文基于PVP的“亲水抗污”性质,设计并制备了多种新型稳定的抗污
传统的推进剂燃料肼及其衍生物具有毒性和致癌性,操作成本高且存在安全隐患。自燃型离子液体具有蒸气压低、毒性低、液相温度范围大、热稳定性高等优点,是最有潜力取代肼及其衍生物的新一代推进剂燃料。  本文合成了23种离子化合物,其中17种为自燃型离子液体,对它们的黏度、密度、熔点、分解温度、生成热、比冲、点火延迟时间等进行了理论计算和实验测试。结果表明这些自燃型离子液体的密度在0.908-1.270g·m
学位
绿色荧光蛋白(Green fluorescent proteins,GFP)是一种存在于海洋生物维多利亚多管水母中的极具生物医学应用价值的天然发光蛋白。GFP的核心发光元件是由对羟基苄基2,3-二甲基咪唑啉酮(p-hydroxybenzylidene-2,3-dimethylimidazolinone, p-HOBDI)构成的生色基,蛋白内大量分子间氢键围绕在p-HOBDI周围,将生色基限定为单一
学位