锰氧化物活化过硫酸盐降解水中有机污染物的研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:zhuhai2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于过硫酸盐(PS)的高级氧化技术(AOP)氧化性强,对水中难生化降解有机污染物去除具有优势。锰氧化物在地壳中含量丰富并且对环境友好,用其活化过硫酸盐备受关注。锰氧化物的价态和存在状态较多,其活化过硫酸盐的机理尚不清楚,成为其高效活化过硫酸盐去除污染物的瓶颈。本文合成了一系列锰氧化物,详细探讨了其去除机理,为高效过硫酸盐体系的获得提供理论和技术支持。获得的结论如下:(1)合成了了羟基氧化锰(MnOOH),并将其活化PS的活化剂,以降解废水中的对氯苯胺(PCA)。我们研究了MnOOH用量,PS用量和初始p H值对PCA降解性能的影响。实验结果表明,较高的MnOOH和PS添加量可以提高PCA的降解效率,并且当初始p H从3增加到9时,降解效率受到轻微的抑制。当用作PS的活化剂时,MnOOH具有出色的稳定性和可重复使用性。此外,进行了全面的研究,以确定PS激活机制。结果表明,MnOOH对PS的活化遵循非自由基机理,反应中的主要活性物质是MnOOH表面的活化PS分子;催化剂表面上的羟基充当连接PS和催化剂的桥梁,导致PS的活化。还分析了PCA降解过程中的中间产物,并提出了PCA降解的三种可能途径。(2)合成不同晶型的MnO2,并用于活化过硫酸盐的研究,在不同晶型的MnO2活化PS实验中,β相的MnO2对PS的活化效果要优于α和γ相。β-MnO2活化PS降解PCA是一个非自由基过程且反应过程中不产生单线态氧,而是电子转移过程。污水中的氯离子不会对β-MnO2/PS/PCA体系降解效率产生影响,减小由于卤素离子引入而产生更高毒性的中间产物的风险。MnO表面的氧空位对其活化PMS降解TC有促进效果。这项研究期望加深对氧化锰对PS活化机理的理解,并为锰基材料在废水处理中的实际应用提供技术支持。
其他文献
随着有关中子星的观测越来越多,科学家们对中子星物态和性质的约束取得了很大的进步。在本文中,我们使用双中子星合并的引力波事件GW170817和NICER团队对孤立中子星PSR J0030+0451的观测数据对中子星物态和性质进行约束。我们使用同位旋依赖的参数化物态方程和GW170817事件中的观测数据(双中子星的质量和潮汐形变的概率分布)去研究核对称能及中子星的性质。为了使物态与观测数据相融洽,我们
Mg基储氢合金具有储氢容量高、资源丰富等众多优点,但是脱氢温度较高、吸/放氢动力学缓慢以及循环稳定性较差等缺点严重阻碍了其应用与发展。本文采用高能球磨法,将MgH2与AB5型储氢合金、Li BH4等添加剂进行复合,制备了不同组分的复合材料,旨在改善Mg/MgH2储氢体系的脱氢动力学性能并降低其脱氢温度。本文还阐明了AB5、Li BH4等添加剂对MgH2储氢性能的影响,并分析了其在吸/放氢过程中的作
海上风电是促进世界各国能源结构调整的重要发展方向,中国南海是我国目前海上风电能源开发的重要海域。鉴于南海的面积广阔,不同海区的海洋水文和地形地质等环境条件复杂多变,必须选择与场址环境条件相适应的基础形式才能保证风电场充分发挥社会和经济效益。而斜桩承台式风电基础具有很好的地基条件适应能力、较好的结构稳定性能和成熟的施工技术等系列优点,目前已在我国海上风电场建设中得到广泛应用,但海底局部冲刷问题常常导
N~6-甲基腺嘌呤(m~6A)是真核生物中最常见的RNA修饰之一,在基因的表达调控中起着重要的作用,是一种重要的表观遗传修饰。本文利用RNA具有带负电荷的磷酸盐骨架对Bi2S3/g-C3N4异质结光电信号的猝灭来构建光电化学生物传感器。以m~6A和Au NPs结合得到m~6A金标抗体,采用Bi2S3/g-C3N4异质结作为光电活性材料,利用氨基与羧基的共价结合,硼酸基团与抗体之间的特异性识别以及抗
口罩是应用最为广泛的人体呼吸防护用品,可显著减少细颗粒污染及通过气溶胶、飞沫引起的细菌病毒传播对人体和公共卫生造成的危害。但目前佩戴商用高效防护口罩普遍存在很强的面部闷热感,特别是在高湿环境下长期佩戴,这极大的限制了个人呼吸防护装置的推广使用,也不利于提高公共卫生防控能力。为此,本文将辐射冷却这种零能耗表面冷却技术用于口罩滤料热管理,通过静电纺工艺制备兼具热舒适性和高效PM2.5防护功能的PA6-
电网作为现代社会的关键基础设施和能源互联网的枢纽,其发展一直得到极大关注。对电力网络的发展路径开展定量评估是现阶段相关部门进行电网规划与建设管理过程中需要考虑的关键问题。一种从全局的角度评判电网规模发展本质的机理有助于更科学准确地设定电力系统的发展路径。本文提出一种基于复杂网络理论的异速生长规律研究电网规模发展变化规律的方法,在相关领域进行了探索性的研究。本文为电力系统的规划和建设提出了一种系统性
移动群智感知是目前最具有影响力的新兴技术之一,它利用现有的通信基础设施(Wi Fi、4G/5G)和智能设备用户的移动性,从分散在监测区域的智能设备中收集个人和周围环境、位置、交通状况、噪音水平等数据,并在云服务器中聚集融合,实现有价值信息的提取和交付。移动群智感知在诸如环境监测、智能交通、医疗保健、室内定位等智慧城市的各方面都具有广阔的应用前景。然而,移动群智感知应用的大范围推广仍面临许多的挑战。
因钠资源丰富、环境友好,尤其是钠与锂之间的电化学相似性,钠离子电池被认为是替代锂离子电池最有前景的储能器件之一。锂离子电池中传统的负极材料石墨并不适配于钠离子电池,因此亟需开发高性能负极材料来适应钠离子电池商业化的发展。钼基负极材料价态丰富并拥有独特的物理化学性质,已经得到了广泛的研究。本文致力于发挥不同钼基材料的优势并改性其不足,通过材料纳米化、复合碳基材料、设计异质结构以及分层结构等方式来构建
背景:急性髓系白血病(acute myeloid leukemia,AML)的各类治疗方法并不十分理想。嵌合抗原受体(chimeric antigen receptor,CAR)T细胞疗法在B系淋巴细胞白血病中成效卓越,但在AML中疗效不佳。在前临床实验中效果优异的如CD123 CAR T细胞疗法及CD33 CAR T细胞疗法在一期临床试验中几近无效,开发适合AML的新靶点迫在眉睫。CD56在AM
随着传统化石燃料的能源危机和碳排放导致的全球气候变化问题日益加剧,发展环境友好且可持续的清洁能源已成为人们关注的热点。氢能源具有高能量密度、储量丰富、可持续性和燃烧后零排放等优点,被认为是未来最有前途的化石燃料替代能源。近年来,电解水制氢因其产氢量大、纯度高、无碳排放、可持续性强、水资源丰富等优点越来越受到学术界和工业领域的关注。电解水析氢过程需要高效的电催化产氢(HER)催化剂来加速反应动力学,