论文部分内容阅读
有机电致发光作为新型的发光技术越来越被人们认识和使用,在过去的几十年内,通过发光材料和器件结构的优化以及制备工艺的改革,有机电致发光器件的发光性能得到了很大的提升,但是有机电致发光的发光机理至今也没有一个统一的理论,因此有机电致发光器件内部发光机理的研究也显得越来越重要。基于以上介绍,本文主要做了以下工作:利用热蒸发真空镀膜设备,制备了器件结构为ITO/PEDOT:PSS/m-MTDATA (20nm)/m-MTDATA:3TPYMB(1:1,40nm)/3TPYMB(20nm)/LiF (0.8nm)/Al(80n m)的器件,并利用瞬态电致发光测量系统对其电子发光进行了测量,测量脉冲为两个周期性的驱动脉冲,两个脉冲的时间间隔为100us、300us、500us。研究发现在第二个脉冲驱动下器件的EL强度稳定值比第一驱动驱动下的EL强度稳定值大,且第二脉冲的EL强度稳定值与第一脉冲EL强度稳定值的比值随通过器件的电流增大而减小,实验还发现第二脉冲撤销时的延迟发光衰减速度要比第一脉冲撤销时的快,这是由于第二脉冲撤销时发光层内极化子(电荷)对激子的猝灭(TPQ)比较严重。制备了器件结构为ITO/Alq3(70,80,90,100nm)/Al(80nm); ITO/Alq3(1Onm)/Bphe n(20,30,40nm)/Al(80nm); ITO/NPB(10,20,30,40nm)/Alq3(20nm)/LiF/Al(80nm)的三大组基础器件。利用瞬态电致发光测量系统进行测量,研究发现相同电流密度下,电子传输层厚度越大在,器件达到稳定发光所需要的时间越短,这是因为要达到相同的电流密度,器件厚度越大,所需的电压越高,较高的电压提高了电子和空穴的注入能力,因此对器件发光达到稳定发光的时间起到了缩减的作用。制备了器件结构为ITO/PEDOT/TAZ:Ir0(10%wt)/LiF/Al的一组器件,其中发光层采用甩膜法制备,甩膜速度分别为1500r/min、2000r/min、2500r/min、300Or/min。实验发现,器件的稳态发光光谱,随着驱动电压的上升,发光肩峰越来越高,这是由于发光层内部的TPQ更加剧烈,因此低能级激子的衰减发光占据更多的发光成分,造成发光肩峰的变化。利用瞬态电致发光测量系统进行测量,发现驱动撤销时出现发光过冲现象,这是由于累积在发光层两侧的电子和空穴再复合发光造成的。