论文部分内容阅读
Lotka-Volterra生态模型作为种群动力学模型的重要课题,自从被提出以来就受到了广泛关注,经过不断的演变与发展,其种群结构愈发完善,所纳入的影响因素也愈发丰富,能够较好地描述生态系统中各种群的生长规律及其相互作用关系。通过对它的研究与分析,人类可以更好的掌握自然界中其它物种的生存状况,从而对其种群数量进行预测和调节,实现人与自然的和谐共处。与确定性Lotka-Volterra生态系统模型相比较,具有白噪声干扰的多种群生态模型的研究还有待进一步的深入。在这样的背景下,本文在前人工作的基础上对确定性Lotka-Volterra生态模型进行了改进推广,对几类具有时滞和随机干扰的多种群生态模型的生存状态与渐近行为进行了讨论。具体内容如下:1.研究一类具有时滞的随机三种群竞争-捕食模型。利用局部Lipschitz条件和线性增长条件证明了系统存在唯一全局正解,利用随机微分方程比较定理及其拓展定理获得了系统灭绝性和持续生存性的充分条件,通过构造合适的Lyapunov函数获得了系统的期望具有全局吸引性的充分条件,并且考虑了不同初始条件和不同时滞对于系统期望稳定性的影响,最后对系统进行仿真验证了理论分析的正确性,并与不具有持续生存性和期望全局吸引性的系统进行比较,佐证了所给结论的正确性。2.研究一类具有时滞及空间扩散的随机三种群捕食模型。在第一部分研究的基础上考虑了食饵种群在相通区域内的流动现象,在生态模型中加入了“空间扩散项”,通过构造辅助系统和根据不同情况对扩散项进行分类讨论,证明了系统存在唯一全局正解,利用随机微分方程比较定理和对扩散项的分类处理,得到了辅助系统灭绝性和持续生存性的充分条件,并对所得结论进行结论类推,获得了系统具有灭绝性和持续生存性的充分条件,通过构造合适的Lyapunov函数获得了系统的期望具有全局吸引性的充分条件,最后通过MATLAB仿真和Milstein方法验证了理论分析的正确性。3.研究一类具有时滞及Beddington-De Angelis功能性反应的随机三种群食物链捕食模型。在第一部分研究的基础上引入了“依赖关系项”,利用局部Lipschitz条件和线性增长条件证明了系统存在唯一全局正解,利用伊藤公式获得了随机系统的解析式,随后利用随机微分方程比较定理对解析式进行分析,计算出了系统解的上下确界,得到了确保系统一致持久性的充分条件,通过构造合适的Lyapunov函数和对时滞项的巧妙处理,获得了系统解的全局吸引性的充分条件,最后对系统进行数值模拟验证了理论分析的正确性,并通过分别给出关于系统一致持久性和解的全局吸引性的“反例”,进一步证明了所给的充分条件的正确性。4.研究一类具有时滞、Beddington-De Angelis功能性反应及空间扩散的随机三种群捕食模型。对已讨论的模型做进一步的完善。通过构建辅助系统证明了系统存在唯一全局正解,利用随机微分方程比较定理、构造合适的Lyapunov函数和一些新的方法与技巧,证明了在适当条件下系统具有一致持久性和解的全局吸引性,并在系统的解具有全局吸引性的前提下,推论出了系统的期望也具有全局吸引性,最后通过MATLAB仿真和Milstein方法验证了理论分析的正确性。