基于深度学习的车辆目标检测

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:yhmlivefor54
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,越来越多的计算机视觉任务与深度学习相结合并取得了突破。目标检测是众多计算机视觉应用中的底层任务,在工业界的部署十分广泛,因而随着这些算法的成熟和性能提高,越来越多的场景开始尝试计算机视觉算法的落地。在这些任务中,车辆目标检测是前景巨大发展迅速的落地场景之一,比如:车辆停车检测、交通违规检测、无人驾驶等。但与学术界不同的地方在于,除了精度,工业界对算法速度和资源消耗等成本问题更为看重。因此本文使用公开数据集COCO中的车辆类,从精度和速度两个角度入手,在现有的目标检测算法的基础上分别对骨干、颈部、头部网络进行研究改进:(1)提出针对车辆目标检测的神经网络搜索算法。通常的网络架构搜索算法都是针对图像分类对网络结构进行设计,但是因为任务之间差异性,图像识别上的最优网络在车辆目标检测中往往性能不佳。为此本文直接针对车辆目标检测的任务对骨干网络结构进行搜索,通过超网络建立搜索空间,将延迟率可微化后引入搜索指标中。在目标函数中,精度和速度同时作为约束项,在不影响精度的情况下,搜索出最高提速16%的网络结构。该方法可以针对不同的硬件平台的特性进行搜索,同时引入设计建模的延迟率预测模型,可以在搜索过程中预测模型延迟率,达到硬件在环的效果,极大地节省了模型搜索过程中对GPU资源的消耗。(2)基于多尺度融合网络提出适合车辆检测的单阶段多尺度检测算法。为了解决单阶段车辆目标检测算法中尺度变化对算法性能的影响,本文设计多尺度自适应学习模块在骨干网络输出的不同特征层上分别进行目标检测,让锚框的分配更为合理的同时获得多层信息。除此之外,本文通过网格搜索得到最适合车辆目标检测算法的焦点损失函数——困难样本重采样损失,该损失能够解决车辆目标检测中正负样本不均的问题。(3)基于关键点回归的单阶段多尺度车辆目标检测算法。为了进一步压缩网络结构,本文仅改进基于锚框算法中的头部网络将锚框从算法中去除,并应用基于关键点回归的检测技术。该方法能够消除因为候选框密集导致的正负类别比例不均的问题,同时也引入多尺度自适应学习模块,该模块可以抑制多重样本的问题。本文在新构造的回归器网络结构中加入一个不含参数的分支用来训练预测框的中心性,该方法在几乎不增加推导时间的同时减少了低质量预测框的生成。
其他文献
空间谱估计是阵列信号处理的一个重要分支,广泛应用于雷达、通信等各个领域。传统的空间谱估计算法是模型驱动的,即根据预先建立的函数模型与接收信号之间的匹配情况对空域参数进行估计。然而当阵列流形存在误差时,模型与数据的匹配失效,使得该类算法的性能明显降低。为了解决这个问题,本文运用机器学习方法构建网络模型直接学习接收信号与空域参数之间的非线性关系,实现误差条件下的波达方向估计。本文围绕空间谱估计问题,结
临床医学中眼底图像能反映各种疾病的早期症状,眼科医生可通过视网膜血管实现早期诊断。现实世界中视网膜血管结构复杂且医师在诊断时具备主观性,因此设计一种视网膜血管自动分割方法对于减轻医师负担和早期诊断至关重要。当前医学图像领域中深度学习已成为主流方法,它相较于传统分割方法避免了人工提取特征的过程,使得最终分割结果更为客观。本文基于上述背景,采用深度学习从以下三个方面进行视网膜血管分割研究:1.基于编码
分类是机器学习领域经典而核心的问题,也是人脸识别、图像分割、目标重识别、目标检测等复杂任务的基础,分类结果的质量好坏直接关系着上层复杂任务的性能。随着社会和科学的不断发展,日益增长的人工智能和深度学习的工程应用对分类这一基础任务的性能(泛化性及鲁棒性)也提出了更高的要求。本文以基于深度学习的大间隔分类方法为研究课题,着眼于广泛使用的Softmax交叉熵损失函数的分类方法,重点研究在当下大间隔分类方
随着物联网技术的蓬勃发展,基于室内位置服务的市场需求与日俱增。室内定位中的指纹式定位方法因其在复杂的室内环境中抗干扰能力强得到广泛应用。传统的指纹式室内定位算法假设离线建库阶段的信号强度分布与在线定位阶段的信号强度分布是一致的。然而,信号强度分布经常因环境变化、设备异构等因素发生变化,此外无线接入点的缺失或新增会导致特征维度异构。迁移学习通过将源域的知识迁移到目标域中可以减轻环境变化和设备异构引起
分布式阵列是当下研究热点。分布式阵列的协作波束成形技术用于通信网络中信号的定向发送和接收,通过多天线发送相同的信息,将多路信号进行合成,得到所需的理想数据信号。每个传输节点作为单独的发送端同时发送。由于传输节点的不同在频率、时间、相位上存在偏差,导致接收端信号强度损失。此外,在现实的阵列系统中,受到阵列几何不确定性以及电磁耦合等多方面因素影响,阵列误差广泛地存在且不可避免。各类算法基于理想化所建立
目前,深度学习算法已经广泛应用于SAR(Synthetic Aperture Radar)图像的舰船目标检测领域。不过,由于舰船目标在SAR图像中呈现分布稀疏、尺寸差异大、长宽比悬殊等特点,这导致传统Faster R-CNN算法检测这种类型的舰船目标时存在准确率低、漏检率高等问题。针对上述问题,本文开展的主要工作如下:首先,针对传统Faster R-CNN算法在检测舰船目标存在的局限性,提出了一种
随着社交媒体成为主流传播途径,信息量远超人工审核能力。同时,确保信息有效性是保障社会公序良俗的关键,因此遏制假新闻传播已成为亟待解决的问题。但假新闻数量多、形式杂导致难以进行有效监管。传统方法通过概率模型进行判别,但模型搭建难、技术落地成本高且效果不理想。本文聚焦于新闻真实性鉴别,以多特征融合方法为主要研究方法,基于深度学习的方法,搭建了新闻实体鉴别模型以及新闻图像鉴别模型。(1)多特征融合新闻真
多源传感器管理通过资源分配支撑传感器网络完成多目标跟踪及多目标分类等任务,并且通过多任务调度提高系统响应速度。本文对多目标跟踪及多目标分类下的传感器部署分配以及多任务调度进行研究,提出两种算法及一种模型。主要工作及成果包括:1、针对多目标跟踪情景中传感器应当采取何种策略选取哪个或哪几个目标进行跟踪的问题,本文设计模糊逻辑系统从目标与传感器之间的距离、目标的速度、加速度以及航向角四个维度来量化目标威
雨天采集的图像和视频中,视觉内容极易受到雨水遮挡,能见度低,为我们正确理解视觉信号内容带来了巨大挑战,迫切需要高效的视觉信号去雨方法。然而,由于雨水在时空域的外观变化剧烈,且分布不尽相同,为我们有效去除雨水,并保护无雨区域的纹理细节带来了诸多困难。为了解决上述问题,本文从刻画雨水在图像视频中的时空域变化特点出发,展开了视觉信号去雨算法研究:(1)针对雨水在空域上分布不均、外观各异的特点,提出了基于
深度学习模型在很多识别或分类的视觉任务中均效果出众,能够取得极高的预测准确率,但当被识别或分类的图像被添加一些人眼无法察觉的对抗扰动时,识别器或分类器的预测准确率便迅速下降,这一过程被称为对抗攻击,被添加扰动的图像被称为对抗样本。在生成对抗样本的研究工作中,对于已知模型内部参数的白盒攻击方法和针对全图像素区域的扰动添加方法,攻击成功率已经达到了很高的水平。但是在未知模型内部参数的黑盒攻击方法和限制