【摘 要】
:
我国油页岩储量丰富,油页岩作为石油替代能源物质在未来具有较大的应用潜力,对油页岩的高效开发利用具有重大战略意义。由于油页岩含水率较大,不利于对其规模化开发利用,所以对油页岩脱水预处理成为当前关注的焦点。本文在传统气流-喷动床组合干燥的基础上提出将热管结构加入到设备中,开发了气流-喷动床热管辅助传热干燥设备。借助喷动气体和热管结构的联合作用,实现对喷动床环隙区物料流动与干燥的强化。本文从实验和模拟两
论文部分内容阅读
我国油页岩储量丰富,油页岩作为石油替代能源物质在未来具有较大的应用潜力,对油页岩的高效开发利用具有重大战略意义。由于油页岩含水率较大,不利于对其规模化开发利用,所以对油页岩脱水预处理成为当前关注的焦点。本文在传统气流-喷动床组合干燥的基础上提出将热管结构加入到设备中,开发了气流-喷动床热管辅助传热干燥设备。借助喷动气体和热管结构的联合作用,实现对喷动床环隙区物料流动与干燥的强化。本文从实验和模拟两个方面对热管辅助的气流-喷动床内部的流体动力学特性和干燥特性进行了研究。流体动力学特性实验结果表明,热管辅助的气流-喷动床相比传统气流-喷动床压降减小。热管辅助对于低床层影响较大,多热管条件下不能够形成传统喷动床稳定规律。增加热管数量使最大喷动压降和最小喷动速度减小。加入12根及以下热管时压降突变均表现为压降二次变大,但变大幅度逐渐减弱,且压降突变的转变气速值在逐渐增大。当热管数量大于12根时,压降突变转变为二次减小,喷动变得较不稳定。热管数量为12时的床层压降较小且稳定,有利于喷动床操作。床层较低时无压降突变,气速较大时压降逐渐减小。不同床层下小粒径颗粒未出现明显的压降二次突变。不同进气方式下最大喷动压降相差280Pa。间歇比连续进料时最大喷动压降增大17.6%,表观气速0.88m/s是两种进料方式下的流型变化点。数值模拟流体动力学特性结果表明,热管影响了颗粒在流场中的循环现象,喷泉区颗粒进入环隙区时颗粒速度较大。热管壁面条件对于流场有较大影响,壁面滑移系数的增加使喷射区直径增大,环隙区颗粒速度变化明显。颗粒间弹性恢复系数对床内固相的垂直分布有显著影响,颗粒拟温度随恢复系数的增大而增加。颗粒与壁面碰撞恢复系数对于环隙区颗粒速度有显著影响,随着恢复系数的增大,颗粒拟温度在增大。干燥特性实验结果表明,热管辅助提高了油页岩脱水效率。12根热管比无热管干燥时间缩短约14.29%,水分脱除率提升约4.25%。床层高度、气体温度、颗粒粒径对油页岩干燥的影响较大,而气体速度和初始含湿量的影响相对较小。在连续跨域循环操作下,装置无热管条件干燥所有物料需要约90分钟,相同条件下热管辅助干燥时间缩短约11.11%。
其他文献
随着5G技术的迅猛发展、电子通讯设备的集成化以及军事隐身技术的升级换代,铁氧体、磁性金属颗粒等传统吸波材料由于其密度较大,稳定性差,已无法满足当前的吸波性能需要,开发轻质的高性能复合吸波材料已经成为目前功能材料领域的重点研究方向。二氧化钛(TiO2)由于其低密度、高稳定性以及无毒无害等特点,在吸波领域展现出较大的应用潜力。但将其应用于吸波材料需要进一步解决如下关键问题:1)介电常数低,阻抗匹配特性
双马来酰亚胺树脂是一种高性能热固性聚合物,具有优异的高比强度、高比模量、耐高温、耐辐射、耐腐蚀和易加工等优异的特性,已广泛应用于航空航天、机械、电子等领域。近年来,碳纳米管以良好的力学、导电、热学性能等引起研究人员的极大关注,将其添加到高分子树脂中可以形成性能更为优异的聚合物纳米复合材料。然而,纯碳纳米管与聚合物基体之间主要通过微弱的范德华力作用,界面作用力较弱,难以形成有效的载荷传递。因此,碳纳
利用大规模能量存储系统是解决太阳能、风能等清洁能源间歇性问题的有效手段,与锂离子电池相比,钠离子电池因其丰富的储量具有价格优势。随着正极材料的研究日渐成熟,开发性能相匹配的负极材料是钠离子电池商业化应用的关键。钠离子较大的直径阻碍了传统碳材料的插层储钠过程,而巨大的体积膨胀大大降低了金属材料的循环寿命。在众多的负极材料中,金属与碳的复合材料兼具着高容量和高循环稳定性的优点,表现出极大的发展潜力。选
有机太阳能电池以其轻薄、柔性可折叠、半透明等独特优势在近几年得到迅速发展,尤其在便携式电源和建筑设计方面显示出巨大的潜力。对于小分子材料来说,由于其较高的设计灵活性、易于修饰和分离提纯且重复性好等优势,具有较为广阔的发展前景。因而人们主要致力于设计新型小分子光伏材料来实现优异的器件光伏性能。本文采用了4种设计方法,分别为端基修饰、氟原子的取代、侧链调控和延长共轭骨架,成功设计并合成了8种新型的小分
任何一种新型材料的应用和发展必然要依赖于越来越多的应用需求,现代社会人们对于车辆的节能减排,飞机、汽车的出行安全,可穿戴设备、运动装备的轻便性等等需求愈发提高,传统的轻量化金属难以同时满足高可靠性和低密度的要求,碳纤维复合材料应运而生取得了极大的发展。受益于其特有的相对于传统金属材料的高强度、低密度、高可靠性的优点,在航空航天、军事装备、汽车制造等等领域取得了极大的发展和应用。复合材料的固化成型过
碳纤维因具有高强度、高模量、低密度以及良好导电性等优异的性能使得其结构复合材料能够广泛地应用于航空航天和国防军事领域,具有承载和轻量化的作用,但碳纤维的介电常数较高,与自由空间的阻抗不匹配对电磁波产生反射强烈,因而需要进行改性并对其介电性能进行研究。本文分别采用溶胶凝胶法和化学气相沉积法制备了SiO2和SiC改性涂层,通过树脂浸渍固化碳化法制备了C/C复合材料,由于碳基体的高导电性导致对电磁波的高
文章主要介绍一种高空大悬挑装配式可拆卸周转模板支撑体系,该施工工艺成功解决了高空大悬挑混凝土结构承重模板支撑体系的搭拆问题,相比型钢悬挑梁支撑架具有明显的经济效益。
FGH4096粉末高温合金是我国上世纪八十年代开始研发的用于制作高性能航空发动机高温部件的关键材料。由于其在700℃下具有较低的裂纹扩展速率、较好的综合力学性能以及良好的抗疲劳、长寿命以及抗腐蚀性能,已被应用于国内外先进航空发动机涡轮盘的制造中。我国的FGH4096合金与国外同类粉末高温合金(René88DT)相比尚存在不小的差距,具体表现为承温能力低、使用寿命短、使役稳定性差,这与合金中的O、N
超晶格是由纳米颗粒组装而成的二维、三维长程周期性有序结构。不同于单颗粒,超晶格体系具有特异于其周期性有序结构的新型光、电、磁特性,从而在表面增强拉曼光谱、表面等离激元器件、磁光手性等领域展现出了广泛的应用前景。通过调控纳米颗粒的弱化学相互作用,从而实现具有不同结构参数的超晶格的可控组装,是低维纳米材料、自组装化学等领域中的热门方向。目前,基于“自上而下”的纳米加工方法制备的纳米颗粒超晶格,受加工极
与传统建筑技术相比,装配式施工技术具有工期短、污染小、成本低等优势,因此该技术在建筑领域得到了广泛的推广。高层建筑项目采用装配式施工技术时,为了确保施工安全,会使用铝模板作为项目外部的固定支撑,并利用爬架提升建筑材料运输、施工人员移动的效率。文章以实际案例为切入点,围绕装配式建筑项目中,铝模爬架技术的实际应用方式,以及铝模爬架施工质量控制要点等问题,展开详细探究。