论文部分内容阅读
近几年,微网系统凭借其诸多的优点使得现代电力系统研究进入了新的时代,其通过整合各种微源的优势极大地促进了电力系统的发展。微网具有交流结构、直流结构和交直流混合结构,与传统直流微网或交流微网相比,交直流混合微网结构灵活、能量利用率高,但控制复杂。为了保证不同运行状态下交直流混合微网在小扰动下能够稳定运行,本文对不同运行模式下的控制策略进行了研究。为了减小弃风弃光,提高系统综合利用效率,实现削峰填谷,本文对利用群智能算法进行主动负荷响应进行了研究。建立了典型微源的数学模型,其中包括:太阳能光伏发电、风力发电和储能单元。对于光伏发电,利用所建立模型分析了不同环境下光伏电池板的输出特性,根据功率电压特性曲线,利用扰动观察法在DC/DC变流器实现最大功率追踪,保证光能的最大利用率;对于风力发电,详细分析了其各模块的数学模型,建立其仿真模型并验证了模型的有效性,为后续风电参与频率调节奠定基础;对于蓄电池,详细分析了其出口双向DC/DC变流器的工作原理,并通过仿真验证了其可有效调节直流母线电压。然后根据交直流混合微网系统结构和运行特点提出了混合微网系统协同控制策略。在联网运行状态下,光伏发电和风力发电以最大功率输出以充分利用可再生能源,微网管理系统通过控制微型燃气轮机的出力来调节与外电网的交换功率,蓄电池仅参与直流母线电压调节;在孤网运行状态下,光伏发电仍以最大功率输出,蓄电池、风力发电和燃气轮机三者对系统进行协同控制,以保证系统频率、电压的稳定。利用所建立的仿真模型,通过对比仿真验证了所提控制策略在控制交换功率、抑制频率变化、稳定直流电压上的有效性。最后针对可再生能源波动性大,日负荷曲线与可再生能源输出曲线不相符,利用燃气轮机进行调节后其输出曲线峰谷差较大、综合利用效率低等问题,提出了引入电价激励政策的主动负荷响应策略。该策略利用蚁群算法,以最小用电费用为目标函数进行用电任务安排。通过对比验证,证明了本文所用蚁群算法可高效、快速实现主动负荷响应,有效缩小燃气轮机输出峰谷差,提高系统综合利用效率。本课题由国家自然科学基金委(NSFC)提供资助。项目名称:《智能电网与电动汽车环境友好集成与交互基础理论和关键技术研究》(51361130153)。