论文部分内容阅读
对于下承式钢筋混凝土系杆拱桥,吊杆是一个起传递力作用且非常关键的受拉构件。吊杆索力是否合理对于桥梁的内力状态与线形状态有非常大的影响,若不合理会缩短桥梁的使用寿命。因此,如何确定系杆拱桥的成桥吊杆索力和施工吊杆索力,在施工阶段中怎样才能实现实际状态与目标状态的高度拟合,以及从设计-施工及运维过程中某些参数发生变化是否影响桥梁结构安全性。本文以某大桥为依托就求解系杆拱桥合理成桥吊杆索力、合理施工吊杆索力、施工阶段控制分析以及针对某些参数对桥梁结构的影响分析展开研究,主要研究内容如下:(1)首先建立桥梁的成桥有限元模型,采用刚性支承连续梁法、刚性吊杆法、零位移法,弯曲能量法四种方法,确定出合理成桥状态下吊杆索力值,并依据四种方法,桥梁的受力状态,总结出四种方法优缺点,同时对合理成桥状态吊杆索力进行优化。采用刚性支承连续梁法、刚性吊杆法、零位移法得到的索力相差较小,索力较为均匀,方法的本质是相同的,对于弯曲能量法以控制拱肋系梁最小弯曲能为目标得到的索力合理均匀,方法简单。得出的索力值,为成桥状态提供一个目标值。(2)其次对于合理施工阶段吊杆索力值的确定,本文分别采用正装迭代法、倒退分析法、倒退分析-正装迭代综合法、无应力状态分析法以上面章节得到的合理成桥状态为目标。求解出合理施工吊杆索力值,总结这几种方法的优缺点:对于采用正装迭代,方法原理简单,意义明确,适用于大部分桥梁,能够考虑混凝土的收缩徐变与吊杆的垂度效应,但是一次计算的结果与目标值偏差较大,需要多次迭代,工作量较大。倒拆-正装迭代这种计算方法,首先提出一组较为接近的初始索力进行迭代计算,有效减小迭代次数。无应力状态法只要保证其无应力长度与无应力曲率不变,对不同张拉方案得到的结果都是一致的。同时用无应力状态法对比分析三种张拉方案下桥梁结构的受力状态,对比分析出方案3:拱肋的1/4、3/4处分别向中部与端部间隔张拉时,结构的内力处于最优状态。(3)对于桥梁的施工控制,本文主要对混凝土水化热、支架变形与承载力、吊杆索力、拱肋与系梁应力以及线形进行监控,保证桥梁的安全施工。通过上述计算可得到水化热控制值、支架变形值、吊杆的初张拉力与铺装完成后的终张吊杆力的理论值以及吊杆张拉的每个阶段拱肋与系梁的应力及变形值。并且得出以下结论:水化热控制主要是温度的记录,主要包括:进、出水口的温度;混凝土内部温度传感器的温度;大气温度;混凝土表面的温度,因此施工阶段应该严格控制。对于支架的控制,主要包括消除弹性变形,调整立模标高,同时保证支架有足够的支撑力。对于吊杆索力、应力与线形的控制主要是针对关键施工阶段理论控制值,施工时需注意实测值与理论值的对比,若有偏差及时调整。我们能将理论计算得到的理论值应用于实践,指导桥梁施工,同时希望能为同类型桥梁的施工提供技术参考。(4)由于设计思路的不同、施工的误差、或者由于桥梁运营阶段造成的桥梁损伤等因素。本章主要探究拱肋刚度、横撑类型、拱肋侧倾、自重误差、吊杆刚度折减、吊杆破坏等参数对桥梁结构内力的影响,得出以下结论:拱肋的刚度与材料的特性和截面尺寸有关,设计阶段选择不同材料与截面对拱肋的应力、自振频率、桥梁的稳定性有非常大的影响,而对吊杆索力基本无影响。横撑类型不同,本质上也是横撑刚度的不同,桥梁的屈曲系数与自振频率对横撑刚度的变化很敏感,横撑刚度变化对拱肋的应力和吊杆索力基本无影响;由于施工误差会导致生拱轴线的侧倾,研究发现,拱肋侧倾5°虽然会对拱肋、吊杆的内力造成影响,但影响相对较小,而且对比向外侧倾与不发生侧倾两种状态,向内侧倾更加安全。混凝土超方与少方对吊杆索力的影响最为明显;运营期间,吊杆发生锈蚀、损伤会影响吊杆自身的受力,同时也会影响桥梁其他构件的受力,从而影响桥梁的安全。研究发现,随着时间的推移,吊杆刚度降低后,对拱肋的影响并不大,在拱脚、1/4、跨中、3/4位置影响相对突出:对吊杆影响明显,特别是边吊杆的变化最大。最后希望可以为同类型桥梁的设计与施工提供一些参考。