【摘 要】
:
推荐系统可以为用户提供感兴趣的推荐项目,在互联网应用中起到重要作用。而图神经网络作为一种新兴的图表示学习方法,可以基于图的结构为用户和项目生成低维特征表示,进而为推荐系统提供包含节点邻居结构信息的特征输入。因此,基于图神经网络的推荐系统具有重要的研究价值和应用前景。近年来,针对图神经网络在推荐系统中的应用研究成果颇多,但其中不少方法仍然存在下列问题:1.针对邻居节点的均匀采样方法可能会忽略掉重要邻
论文部分内容阅读
推荐系统可以为用户提供感兴趣的推荐项目,在互联网应用中起到重要作用。而图神经网络作为一种新兴的图表示学习方法,可以基于图的结构为用户和项目生成低维特征表示,进而为推荐系统提供包含节点邻居结构信息的特征输入。因此,基于图神经网络的推荐系统具有重要的研究价值和应用前景。近年来,针对图神经网络在推荐系统中的应用研究成果颇多,但其中不少方法仍然存在下列问题:1.针对邻居节点的均匀采样方法可能会忽略掉重要邻居提供的信息;2.没有为评分预测提供合适的可学习参数,限制了图神经网络在推荐任务中的性能表现;3.没有考虑推荐系统中评分图邻居结构存在的时序特性;4忽略了图神经网络中间层输出的浅层结构特征。针对上述问题,本文完成了如下工作:1.提出了一种基于评分可信度采样的图神经网络模型。该模型包括:1)一种基于评分可信度的邻居采样方法,该方法同时考虑了评分图结构中评分的时间信息和节点的度,使得采样过程可以偏向那些更有价值的节点。2)一种基于注意力机制的评分预测方法,衡量了用户和项目的特征表示各个维度在评分预测任务中的重要程度,使得图神经网络在推荐系统中的应用效果得到改善。在六个公共数据集上验证了该模型的有效性:与现有的几种基线模型相比,该算法的MSE损失值最多可以减少27.89%,MAE损失值最多可以减少26.01%。2.提出了一种基于有序输入的门控图神经网络模型。该模型可有效应用于推荐系统。该方法的主要贡献包括:1)关注节点邻居结构的时序特性。让邻居节点按照时间顺序输入到门控图神经网络,进而利用其上下文关系捕获能力捕获邻居结构中的时序特征。2)关注中间层输出的浅层状态输出。采用多头注意力机制融合多层状态输出信息,让中间层提供的浅层结构特征更好地参与到评分预测任务中来。在六个实际数据集上验证了模型有效性:相对于最优基线,模型在其中四个数据集上降低的MSE损失分别为13.36%,8.03%,27.49%和2.52%。3.最后,将两种网络表示学习方法应用于推荐系统,实现书籍推荐。首先对书籍数据进行分析和预处理,搭建出基于评分的推荐系统环境,基于图神经网络为用户和项目生成特征向量表示;然后进一步实现评分预测,根据预测评分的排序结果为系统中的用户推荐若干个项目;系统前后端分离,采用基于Django的后端开发框架和基于VUE与Bootstrap的前端开发框架。
其他文献
随着我国社会智能化进程的不断推进,人工智能被应用到越来越多的领域和应用场景,同时由于自动化识别需求的提升,手写汉字图像的自动化识别成为了当下计算机视觉领域的研究聚焦点。本论文针对手写汉字由于字符疏密不同和连笔交叠导致的检测定位困难问题,完成了基于深度学习的离线手写汉字检测算法的构建;同时由于汉字数量过于庞大,且手写字形复杂多变导致的识别分类困难问题,完成了基于深度学习的离线手写汉字识别算法的构建;
随着互联网信息技术的不断向前发展,人们所要面对和处理的数据信息也日益增多,大量且繁杂的信息阻挠了有效信息的传递,在互联网中找到自己感兴趣的内容宛如大海捞针。对于用户和商家而言,推荐系统可以有效地将物品和用户的信息关联在一起,从而实现高效的推送,创造价值。传统的协同过滤算法中所采用的矩阵分解方式在构建用户物品交互矩阵上存在一定的局限性,导致算法限制了矩阵分解的表现力。本文通过采用度量分解与深度学习相
食道癌作为生活中常见的一种癌症,其发病率和致死率都已经排在靠前的位置。当前诊断食道癌的影像主要有电子胃镜、超声内镜、计算机断层扫描、核磁共振等。医生在分析医疗影像时依赖于经验和专业技术,在诊断工作中容易出现耗时费力、精确度不高等问题。为了提升食道癌的确诊率,保障患者的生命健康,急需一种高效快捷的方式来辅助医生进行诊断。深度学习在图像处理领域已经取得了良好的成绩,它能够有效地对图像进行识别、分类以及
交通驾驶环境是一个复杂多变的动态场景,信息错综复杂。经验丰富的驾驶员受人的视觉选择性注意机制影响,能从大量的交通场景信息中迅速搜索到对驾驶任务重要的关键信息,分析并做出预判,保证行车安全。近年来,交通场景的视觉显著性检测技术越来越受到人们的重视。通过分析驾驶员的注意分布,并对其进行建模,从而预测驾驶场景中显著性区域和目标。目前,大多数研究都是针对白天交通场景的预测,然而,由于光线不足、光源干扰,夜
对于介观系统的输运性质,无序在量子自旋霍尔系统、三维强拓扑绝缘体和超导体、分数量子霍尔系统和弱AIII拓扑绝缘体中起着重要的作用,它可以导致金属-绝缘体相变并驱动拓扑相变。杂质的浓度对量子输运有很大的影响。在某些情况下,它们的微小变化会显著改变电导值。因此,有必要进行大量的数值计算来研究杂质能量和杂质浓度对输运性质的影响。本文希望通过流行的机器学习技术来降低这方面的计算成本。并研究利用机器学习方法
得益于科学技术的突破发展和迅速普及,无人车的应用面越来越广,给山地侦查和勘探提供了更加智能的手段,但是山地环境复杂,海拔变化大,气候条件恶劣,如何保证无人车能够快速准确地行进,完成任务是基本的要求。本文从路径规划以及强化学习方法研究现状入手,对环境建模、基于深度强化学习方法的全局路径规划、基于人工势场法的局部路径规划所涉及的相关技术原理进行了介绍,完成基于环境的无人车避障路径规划系统设计与功能实现
循环神经网络(Recurrent Neural Networks,RNN)是一个简洁高效的非线性通用模型,加上时间元素之后,能有效地处理动态系统(包括时间序列)问题。在实践中,RNN的网络结构(包括反馈位置,隐藏层神经元个数,激活函数等)通常需要人为预先确定,这要求丰富的经验或者繁琐的反复实验;另外,RNN的权值参数优化一直是基于梯度方法的,梯度消失和梯度爆炸问题表现得尤为突出,这些都导致了RNN
音乐源分离是将音乐不同的音轨分离成不同的音频,比如人声源和伴奏源。在标准的单通道混合音乐下,音乐源分离系统的性能已经达到了一定的瓶颈。如何提高在该条件下的系统性能,促进大规模音乐源分离技术的应用推广,这是一个重要的挑战。据此,本文研究基于深度卷积神经网络的音乐源分离模型,设计并实现一套可供用户分离音乐提取人声和伴奏的软件系统,其贡献如下:(1)针对单阶段编码器-解码器网络模型,提出了一种基于二阶段
对于脑肿瘤核磁共振图像进行分割是对其进行更好的医疗诊断和治疗规划必不可少的步骤。现有的以3D U-net为代表基于深度学习的分割模型尽管能够达到较为准确的分割,但依然存在一些问题:首先3D U-net对于脑肿瘤本身的特性利用不够充分,精度仍然有上升的空间;其次对算力资源有较高的要求,结构上存在一些缺陷。针对以上的理由,本文的工作主要围绕如何提高脑肿瘤分割精度进行展开,同时缓解3D模型对于算力资源的
随着抑郁症日渐成为社会关注的焦点问题,在早期可治愈阶段正确诊断抑郁症成为医学研究的一大热点和难点。核磁共振因其成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,在检测早期病变方面具有独特优势,已经成为肿瘤、心脏病及脑血管疾病早期筛查的有力工具,近年来在抑郁症研究方面也有广泛应用。如何提升分类的性能一直是将机器学习算法应用于抑郁症筛查问题的研究热点。本文借鉴现有的研究成果,针对传统机器学习算法