【摘 要】
:
近年来,超大规模线列红外焦平面探测器组件在气象、资源、环境及天文等领域有着重要的应用。受背景噪声抑制的限制,红外探测器往往需要在100K以下的低温工作。随着系统应用对大视场、高空间分辨率及高时间分辨率等需求的不断提高,单个探测器模块规模的发展已不能满足设计指标要求,需要将几个甚至几十个探测器模块在杜瓦组件内集成,而探测器模块的热匹配性、组件杜瓦的传热及轻量化等问题凸显。因此,发展超大规模线列红外焦
【机 构】
:
中国科学院大学(中国科学院上海技术物理研究所)
【出 处】
:
中国科学院大学(中国科学院上海技术物理研究所)
论文部分内容阅读
近年来,超大规模线列红外焦平面探测器组件在气象、资源、环境及天文等领域有着重要的应用。受背景噪声抑制的限制,红外探测器往往需要在100K以下的低温工作。随着系统应用对大视场、高空间分辨率及高时间分辨率等需求的不断提高,单个探测器模块规模的发展已不能满足设计指标要求,需要将几个甚至几十个探测器模块在杜瓦组件内集成,而探测器模块的热匹配性、组件杜瓦的传热及轻量化等问题凸显。因此,发展超大规模线列红外焦平面探测器组件集成封装技术,解决高温度循环可靠性、高温度均匀性及轻量化等关键封装技术,对发展下一代红外焦平面技术具有重要意义。本文以探测器拼接数量为20个的超大规模线列红外焦平面探测器低温封装为研究对象,通过有限元仿真分析、结构设计与迭代优化、试验验证相结合的方法,重点解决红外探测器与超长冷平台的热适配、超长冷平台与制冷机的低热应力与高可靠性耦合、超大尺寸杜瓦轻量化设计与制备等问题,主要研究内容及创新成果如下:针对超大规模线列红外焦平面组件可扩展、可维修、方便测试的原则,创新地设计了一种工作温区100K以下的、由多个“Z”型子基板与TC4辅助安装板精密组装而成的超长冷平台结构,每个子基板三维可调、集成4~8个探测器。分析了支撑分布、支撑材质、支撑壁厚对超长冷平台的力学振动及支撑漏热的影响,结果表明支撑壁厚为0.3mm、三点交错分布的TC4支撑具有较高的抗力学振动特性,超长冷平台的模态一阶基频为356Hz,Y向正弦振动响应的最大放大倍数为1.46倍;当探测器模块从20个扩展到100个时,在保持支撑密度不变的情况下,超长冷平台的模态一阶基频及Y方向放大基本保持稳定,验证了超长线列杜瓦冷平台及交错支撑分布结构的可扩展性。针对超长冷平台高温度均匀性、低封装应力及Z向低温形变的设计指标要求,建立了探测器子模块封装结构的热分析模型,分析了不同厚度、不同材质的基板对探测器耦合热应力及低温形变的影响。结果表明:在金属基板中,采用可伐基板时探测器封装热应力最小,综合指标最优;在探测器宝石电极板与基板间增加平衡层可以减小封装热应力,当可伐基板厚度6mm、因瓦平衡层厚度0.5mm时,Ga As衬底的热应力小于20MPa;在对5个厚度6mm的“Z”型可伐子基板与TC4辅助安装板构成的超长冷平台进行的有限元热仿真分析表明,所有探测器模块Hg Cd Te外延层的最大低温形变为±12.5μm,Ga As衬底的最大热应力为25.3MPa,该冷平台的抗低温形变能力良好。针对由多子基板超长冷平台结构与制冷机冷量单点冷源输出的特点,比较了了多柔性冷链间接耦合、双柔性冷链间接耦合及单个三维柔性冷链直接耦合这三种冷量传输结构,明晰了这三种结构对超长冷平台的温度均匀性及其与冷源之间温差的影响。分析结果表明:在温差控制方面,采用三维柔性冷链结构可以实现两者间的温差最小为4.64K;在温度均匀性控制方面,当加载5W的探测器焦耳热时,双柔性冷链结构和三维柔性冷链结构分别实现了±0.26K、±0.22K的温度均匀性;在柔性方面,对集成三维柔性冷链后的超长冷平台进行热仿真分析,结果表明所有探测器模块Hg Cd Te外延层的低温形变为±12.34μm,Ga As衬底的热应力为25.9MPa,冷链柔性优异。针对超大规模线列红外焦平面杜瓦轻量化的应用需求,提出了拓扑优化、轻量化材料应用、多部件高气密焊接结构与工艺设计相结合的一体化设计实现方法。采用银铜焊料并利用多次钎焊的方式实现了TC4窗口座与可伐过渡环等零件的连接,通过对可伐与TC4钎焊试件镀镍保护的方式抑制Ti元素与Fe元素的接触,EDS和XRD测试结果表明,焊缝中不存在Ti Fe、Ti Fe2等脆性金属间化合物,其平均抗拉强度达到505.8MPa;采用多窗口先独立低温焊再激光焊的方法实现了超大尺寸光窗结构的密封,光窗组件的漏率优于4.80×10-11Torr.l/s;优化后的杜瓦重量9.82kg,减轻率57.3%.搭建了超大规模线列红外焦平面杜瓦热特性测试系统,实现了超长冷平台的温度场及低温平面度的评价测试,并完成了杜瓦制冷组件力学及热学环境试验验证。实测结果表明由20个探测器模块超长线列拼接的杜瓦冷平台的温度均匀性为95±0.26K,超长冷平台与同轴脉管制冷机冷指耦合面间的温差4.67K,超长冷平台上探测器的低温平面度为26.4μm,杜瓦总重量9.86kg,超长冷平台耦合后的随机扫频试验共振点为341.99Hz,与设计结果吻合;杜瓦封装后的整体漏率达到4.2×10-12Torr.l/s,并通过了总均方根6.8grms随机振动试验考核。因此,本课题的研究对后续超大规模焦平面杜瓦的工程化制备具有重要的参考意义。
其他文献
太赫兹量子级联激光器(THz-QCL)具备高功率、窄线宽、频率可调谐以及易集成的特点,在无损检测、安全检查、显微技术、生物医学与通信方面有着重要的应用价值,是一种理想的太赫兹源。随着太赫兹应用的快速发展,对高性能、高集成度、功能多元化的THz-QCL需求日渐增加。本论文着重围绕太赫兹主控振荡-功率放大量子级联激光器(THz-MOPAQCL)展开系统的研究。由于太赫兹波的产生与辐射在主控振荡-功率放
范德华层状材料因具有带隙分布范围广、光吸收作用强、载流子迁移率高等优异的光电特性,在光电子器件领域受到了广泛关注。经过十多年的研究发展,范德华光电子器件已经在光电探测器、偏振灵敏探测器、激光器、发光二极管和太阳能电池等方向展现出潜在的应用前景。然而,基于范德华层状材料光电子器件的一些基础研究还有待深入,如层状材料的缺陷研究、层状材料与金属的界面调控以及范德华异质结能带调控。本论文对范德华层状材料的
高分辨率红外遥感是近年来的研究热点,也是空间遥感领域用来探测和识别目标的重要手段。越来越多的应用机构迫切需要同时具有高地面分辨率、高辐射灵敏度和短重访周期的红外遥感仪器,宽视场的红外推扫成像相机成为必然选择。除了要求具有大口径的光学系统外,还需大规模、长线阵的红外焦平面探测器相配合,从而也要有同等规模的信息获取与处理电路与之配套,这势必造成系统资源需求庞大,与空间遥感仪器的资源限制形成了矛盾。为了
红外焦平面器件是红外探测技术的核心部件,碲镉汞雪崩光电二极管(mercury cadmium telluride avalanche photodiode,Hg Cd Te APD)是目前红外焦平面技术前沿研究之一,它具有高增益、低的过剩噪声因子、高灵敏度和高速探测等优点,能实现激光主被动探测、高灵敏度探测和高精度三维成像。本课题对制冷型红外焦平面高精度时间分辨所需读出电路的关键技术做了详细分析。
窄禁带半导体是禁带宽度小于0.5 eV的半导体。其较窄的禁带宽度带来了诸如高非抛物系数、更容易的碰撞离化与更大的带到带隧穿等独特的性质。特别是碲镉汞这类典型的三元合金窄禁带半导体还具有较大的合金散射、单载流子雪崩等独特性质。在很多需要微弱光信号探测的领域,雪崩光电探测器都有重要应用,比如:遥感、主被动联合探测、激光雷达、量子通信和天文观测等。然而,目前雪崩理论主要是基于Si、Ge等禁带宽度相对较宽
碲镉汞由于其高量子效率、高工作温度范围、禁带宽度连续可调、电子迁移率高等优点成为高速、高分辨率、高光谱探测应用领域最具竞争力的红外探测材料。随着第二代碲镉汞红外焦平面技术逐步进入实用化和产品化,第三代碲镉汞红外焦平面技术的研究也随之展开。当前,红外探测系统的发展方向是更小尺寸(Size)、更低重量(Weight)、更小功耗(Power)、更低价格(Price)和更高性能(Performance),
红外偏振探测可增强微弱目标的探测,大幅抑制云雾和杂散光的干扰,提高目标清晰度,在遥感探测、气象监测、抗干扰成像、分子手性检测和空间光通信等领域具有重要应用。在多种红外偏振探测途径中,片上集成的像元分离型偏振探测器可实时对目标探测,避免机械运动,具有结构简单,稳定性高,集成化,小型化的优点。圆偏振探测在抑制云雾以及杂散光的气象监测、手性分子检测和空间光通讯等领域具有重要应用。但是,新型的微型圆偏振器
单光子探测在激光雷达三维成像、激光测距、荧光寿命成像、激光通信等领域具有广泛应用前景。工作在盖革区的雪崩光电二极管,单个光子即可触发二极管雪崩,产生雪崩电流,是一种很好的单光子器件。基于盖革雪崩光电二极管(GM-APD)焦平面的单光子探测系统具有灵敏度高、探测距离远、测距精度高等特点,它通过计量光子飞行时间实现距离探测。集成时间-数字转换电路(Time to Digital,TDC)的读出电路(R
红外探测系统的重要发展方向之一是“SWaP”,也就是更小的体积、更轻的重量和更低的功耗。而红外光电探测器由于禁带宽度窄,一般工作在液氮温区,制冷系统是带来探测系统体积功耗的主要原因。因此,提高红外探测器的工作温度并且降低制冷系统的功耗和体积,可以推动红外探测技术在便携式手持装备等小型化设备方面的发展和应用。红外探测器在高工作温度下面临的两个主要问题:首先,探测器的暗电流是温度的指数函数,随着温度的
碲镉汞红外探测器具有波段覆盖宽、灵敏度高等优越性能,是航天遥感、天文科学等领域的红外探测的首选。随着红外探测与成像的空间分辨率不断提升,红外探测器规模不断扩大,但因其低温热失配引发的可靠性问题愈加严重。为此,本文重点开展大面阵芯片面形校正、低热应力结构设计等可靠性技术研究,具体研究内容如下:1.实现了大面阵红外焦平面探测器的结构优化设计。通过对探测器的结构尺寸进行优化以及材料参数合理选择等方法来减