【摘 要】
:
行人搜索是一项需要同时解决行人检测和行人重识别问题的计算机视觉任务。随着深度学习的兴起,行人搜索研究获得了快速的发展。然而现有的行人搜索技术仍然面临着很多挑战,诸如行人搜索中的身体部位未对齐问题。行人搜索中的身体部位未对齐问题是由不同的视角、不同的尺度、多变的姿势、遮挡以及身体部位缺失引起的。基于水平分割的对齐方法对人体的划分过于粗糙,无法使网络学习到不同身体部位的最佳局部细粒度特征。现有的基于关
论文部分内容阅读
行人搜索是一项需要同时解决行人检测和行人重识别问题的计算机视觉任务。随着深度学习的兴起,行人搜索研究获得了快速的发展。然而现有的行人搜索技术仍然面临着很多挑战,诸如行人搜索中的身体部位未对齐问题。行人搜索中的身体部位未对齐问题是由不同的视角、不同的尺度、多变的姿势、遮挡以及身体部位缺失引起的。基于水平分割的对齐方法对人体的划分过于粗糙,无法使网络学习到不同身体部位的最佳局部细粒度特征。现有的基于关键点引导的对齐方法并不能很好地应对身体部位缺失导致的未对齐问题。此外,现存的所有身体部位对齐的方法都仅仅关注人体区域的特征,忽略了对行人搜索准确率有积极作用的部分背景特征,例如携带物和背景参照物等。本文围绕现有对齐方法存在的问题展开研究。针对现有的对齐方法忽略了有用的背景信息的问题,本文提出了身体部位和背景对齐的行人搜索网络。为了能够充分利用背景信息,该网络利用MaskRCNN网络生成的掩码信息分别为人体和背景区域生成局部细粒度特征。通过生成身体部位和背景对齐的特征来消除由多视角和多尺度造成的未对齐问题。为了使网络生成的全局特征和局部对齐特征更好地结合在一起,最终生成具有代表性的行人特征。本文设计了一种加权的特征连接方法,即给全局特征和局部对齐特征分别设置不同的权重,使全局特征和局部特征发挥各自的优势。为了使本文提出行人搜索网络能够更好的应对多姿态和遮挡造成的未对齐问题,本文采用基于关键点引导的方法对该网络做出改进,引入人体解析网络把裁剪后的行人图像分成7个人体部位和一个背景区域,以生成更鲁棒的对齐特征。针对身体部位缺失导致的未对齐问题,本文设计了一种特征重构的方法,该方法通过为查询图像和剪裁后的图库图像都存在的部位生成部位对齐特征的方式,来对齐具有不同身体部位的一对查询-图库图像。为了验证本文提出网络的有效性,本文在两个广泛应用的行人搜索数据集CUHK-SYSU和PRW上进行了实验,实验结果表明了本文提出的方法能够有效地解决多种因素造成的未对齐问题。对比行人搜索中的其他对齐方法,本文提出的方法表现更加突出、更具有竞争力。
其他文献
随着大数据时代的发展,作为一种能在保证客户端私有数据不出本地的前提下实现协作学习的机器学习技术,联邦学习(Federated Learning,FL)受到越来越多的关注。凭借其无需客户端上传原始数据就可以实现分布式处理数据任务的优点,联邦学习有望在未来的网络通信系统中发挥出重要的作用。但是,联邦学习这种独特的优势却使得服务器很难预估客户端对全局模型的贡献,从而难以有效地以一种公平的方式激励客户端参
目前大多数声纹识别技术使用复杂度较高的网络模型,以达到更准确的识别精度。模型复杂度过高不适用于存储空间和计算资源不足的设备,例如手机、手环等。相比于高复杂度的模型,轻量级神经网络模型无论在存储空间,还是计算资源方面的需求都低得多。近年,基于深度可分离卷积的轻量级神经网络模型表现出了卓越的性能,将其中较为优秀的模型应用到声纹识别任务上发现,这些模型在性能和轻量化上无法达到很好的平衡。此外,日常生活中
随着网络智能设备的日益激增,移动网络边缘产生了大量的异构数据,为了更好的处理这些异构数据,研究人员提出移动边缘计算(Mobile Edge Computing,MEC)架构,其通过将计算、储存能力下沉到网络边缘以消除云的压力,从而加快内容交付、提高服务质量。此外,随着移动网络上丰富的流媒体服务的数量不断增加,移动设备的流量和计算量都有了巨大的增长。边缘缓存作为一种新兴技术出现在移动网络的边缘,用于
基于数字化发展趋势,探讨数字化转型与企业韧性的关系,以金风科技为例,研究发现:企业韧性主要表现为战略韧性、管理韧性、关系韧性、资本韧性。数字化转型通过提供信息化服务、实现智能化应用、完善数字化监管、开展数智化定制等路径提升企业韧性,主要表现为财务绩效提升、竞争优势形成、发展潜力增强、客户体验升级。上述结果表明,数字化转型确实能提升企业韧性。建议制造业企业加快推进数字化转型,提高韧性水平,政府部门持
在数字经济与实体经济深度融合的新背景下,基础薄弱、能力不足的中小制造企业,如何协调内外部资源推进数字化转型,成为学界和业界关注的焦点。对此,研究围绕宁波澳玛特冲压机床股份有限公司的数字化转型实践,系统剖析其推进数字化转型的阶段举措,并提炼出一个嵌入自主的过程模型。研究发现:(1)中小制造企业需把握嵌入与自主的双轮驱动,逐步突破资源识别、利用和创新的瓶颈,以实现数据可视、高效互联和智能运维的数字化转
随着手机等智能设备的普及与发展,人们可以随时随地分享自己的生活,发表自己的看法。基于位置的社交网络(Location-based social network,LBSN)也因此被人们所青睐而大量使用。其中最为流行的LBSN数据集,例如Yelp、Foursquare、Facebook等获取了大量的用户访问数据,包括用户的签到打分、评论、时间以及兴趣点(Point of Interest,POI)的地
行人重识别(Person re-identification,Re-ID)的目的是通过多个不重叠的摄像机检索目标人物。随着深度神经网络的发展和智能视频监控需求的不断增加,ReID在计算机视觉界应运而生。近年来,基于深度学习的Re-ID方法取得了令人鼓舞的成果。随着封闭世界条件下的识别精度逐渐饱和,对行人重识别的研究焦点转向了开放世界。虽然开放世界更符合特定场景下的实际应用,但也面临着更大的挑战性。
近年来,随着信息技术的快速发展,人们的生活已经越来越离不开手机、电脑等互联网产品。互联网的普及给人们带来巨大便利和乐趣,但不可避免地产生了大量的数据信息。这些数据信息的格式多种多样,不仅包含语音、文字、图像等典型数据,也包含以图结构为代表的非典型数据。节点分类任务作为图数据挖掘领域重要的分支之一,不仅在学术上有着十分重要的理论意义,也在工业上有着巨大的应用价值。图神经网络作为目前节点分类任务的最优
车载自组织网络(Vehicular Ad Hoc Networks,VANETs)能够对视距范围之外的车辆以及潜在的危险进行感知和预警,因此VANETs被广泛认为可以提升车辆的安全性并且改善交通效率。在VANETs的介质访问控制(Medium Access Control,MAC)协议中,使用时分多路访问(Time-Division Multiple Access,TDMA)技术进行通信信道接入不
本文以2015~2021年我国制造业上市公司为研究对象,检验国际化程度对企业数字化转型的影响。研究发现:国际化程度与企业数字化转型之间存在U型关系,即国际化程度对企业数字化转型表现出先抑制后促进的作用效果。机制检验表明:企业财务柔性在二者的U型关系曲线中发挥了中介作用;此外,QFII不仅使国际化程度和数字化转型之间的U型曲线更平缓,还使U型曲线的拐点左移。异质性检验发现,上述U型关系在非国有企业和