论文部分内容阅读
磁性载体的生物传感技术在生物医学的许多领域展现出广阔的应用前景。磁性纳米粒子除了对外加磁场具有响应性外,磁性粒子的另一特点是通过功能化修饰使其表面带有不同的功能基团,通过修饰在其表面的功能化活性基团可连接抗体、抗原、核酸及寡核昔酸等生物活性物质。因此,以金等贵金属功能化的磁性纳米粒子为载体在免疫检测、核酸的纯化与分离、靶向载药、固定化酶、细胞分离等生物医学领域得到了广泛的应用。本文的主旨在于以磁性纳米颗粒为核,在其表面包覆一层具有生物相容性的贵金属原子,从而制备出具有核壳结构的纳米复合颗粒。而作为磁性纳米材料的一个重要组成部分,磁性γ-Fe2O3纳米颗粒也有着广泛的应用前景。本论文正是基于以上考虑,选择了“复合金磁γ-Fe2O3纳米粒子的制备研究”作为研究方向,从以下几个方面开展了工作:1、以改进的共沉淀法制备的Fe3O4为前驱,采用高温氧化法制备了超顺磁性γ-Fe2O3纳米粉体,对其形貌、结构、磁学性能进行了考察,并考察了不同的氧化温度对粒子晶型结构的影响。主要取得以下结果:用高温氧化法制备了粒径为20nm左右的磁性γ-Fe2O3纳米粒子。在高温氧化过程中考察了不同的氧化温度对粒子结构的影响,随着氧化温度的升高,前驱体粒子Fe3O4逐渐转化为γ-Fe2O3,继续提高温度则产物转变为α-Fe2O3。2、合成了氨基功能化和巯基功能化两种表面功能化的磁性γ-Fe2O3纳米粒子,并对其形貌、结构和磁学性能进行了比较研究。分别采用3-氨丙基三乙氧基硅烷(APTES)和3-巯丙基三乙氧基硅烷(MPTES)将γ-Fe2O3纳米粒子表面修饰上氨基(-NH2)官能团和巯基(-SH)官能团,从而获得了表面功能化的磁性γ-Fe2O3纳米粒子。氨基功能化和巯基功能化后的磁性粒子粒径略有增加,较好的保留了原始结构和磁性特征。3、提出了基于超声化学法制备γ-Fe2O3/Au和自组装法制备Gold-Mag两种金包覆的磁性复合纳米粒子的方法,并对这些金磁纳米粒子的形貌、结构和磁学性能进行了研究,主要取得如下结果:1)采用超声化学法制备的γ-Fe2O3/Au复合粒子在常温下表现出较好的顺磁性特征,并具有较为稳定的光学吸收特点,并且其饱和磁化强度可以达到80 emu/g以上,为其在生物医学领域中的应用奠定了基础。2)采用自组装法制备的Gold-Mag金磁复合纳米粒子,结果显示自组装金磁粒子具有更好的磁响应性,且兼有磁性纳米粒子和胶体金的特性。