论文部分内容阅读
Cu-Zr基非晶合金不仅具有高强度、低弹性模量和高弹性应变极限的特点,且在冷却过程中容易析出复杂多变的亚稳相,因此受到广泛关注。本论文以Cu-Zr基原位内生非晶复合材料为研究对象,采用真空电弧熔炼和铜模喷铸的方法成功制备出了含有弥散分布球形第二相的Cu-Zr-Al-Co非晶复合材料。研究了添加合金元素和冷却速率对非晶复合材料相组成、微观组织和应变率相关力学性能的影响,重点分析了产生加工硬化效应的机理和塑性变形能力提高的原因。随着冷却速率的降低,Cu-Zr-Al三元合金由非晶结构转变为非晶相和晶体相的复合结构;Cu-Zr-Al-Co非晶复合材料中晶体相的体积分数逐渐增加,分布也更为均匀。相比于Cu-Zr-Al三元合金体系,说明Co元素能够促进合金熔体中形核核心的形成,有效地避免了大面积晶化现象的发生。其中,Cu47Zr46.5Al6Co0.5非晶复合材料的非晶基体中弥散分布着尺寸均一的球状B2-ZrCu相,体积分数约为10%。对于Cu-Zr-Al三元合金,当组织为非晶结构时,试样在准静态压缩下表现出典型的脆性断裂特征;而当组织为非晶和晶体相的复合结构时,试样则表现出一定的塑性变形能力。相比之下,Cu-Zr-Al-Co非晶复合材料不仅具有良好的塑性变形能力,而且表现出明显的加工硬化现象,断裂应变均达到5%以上。其中Cu47Zr46.5Al6Co0.5非晶复合材料的断裂强度和应变最高,分别为2211MPa和9.06%,其良好的塑性变形能力主要依赖于晶体相与剪切带之间的相互作用和形变诱发的马氏体相变。Cu-Zr-Al-Co非晶复合材料的加工硬化效应主要是由于形变诱发马氏体相变的强化作用。非晶复合材料在变形过程中发生了从B2-ZrCu相到ZrCu马氏体相的转变,相变起始于弹性变形阶段,随着变形量的增加,ZrCu马氏体相的体积分数也不断增加。ZrCu马氏体相相比于B2-ZrCu相硬度明显提高,这能够显著补偿非晶基体的应变软化。在相对较低的应变率(2×10-4~2×10-2s-1)范围内,非晶复合材料表现出了明显的塑性变形行为,屈服强度随着应变率的增加而增加,呈现出正的应变率敏感性。这是由于材料内部少量的位错在变形中起到主导作用,同时马氏体相变生成的ZrCu马氏体相提高了材料整体的强度。而在高应变率(1.2×103~3.6×103s-1)范围内,非晶复合材料的断裂强度随应变率的增加而减小,呈现出负的应变率敏感性。这是由于材料中的剪切带在变形中起到主导作用,高应变率导致剪切带内部的绝热升温,使材料局部发生软化甚至融化,产生微孔洞或微裂纹等缺陷,最终导致材料的突然性脆断。