论文部分内容阅读
气体润滑静压轴承具有刚度大、精度高、摩擦小、发热量小和无污染等优点,能够适应极端工作条件,广泛应用于精密测量仪器、半导体工业、航空航天工业等相关领域。近年来,鼓风机、制冷压缩机、微型燃气轮机等机械设备对功率密度的要求日益增高,需要转子系统运行在较高的工作转速。在较高的工作转速下,传统的滚动轴承磨损严重,轴承寿命大幅度降低。油润滑轴承在较高的工作转速下,轴承的摩擦损耗增大,润滑油温升较大,发热严重,降低了系统的机械效率。因此,传统的滚动轴承和油润滑轴承都很难满足高转速的工作条件,气体润滑静压轴承是高速旋转机械的一种选择。目前,气体润滑静压轴承多用于低速重载的工况,对其在高转速的应用研究较少。在高转速时,由于气膜涡动的影响,传统的径向静压轴承会产生比较强烈的次同步振动,从而影响轴承在高转速条件下的稳定性。本文在多孔质静压气体轴承的基础上,提出了一种可以改善轴承高速稳定性的多孔质可倾瓦轴承结构。论文的研究内容和取得的成果如下:(1)搭建多孔质材料渗透率测量实验台,测量不同密度的多孔质石墨材料的渗透率,分析了渗透率对材料性能的影响。在多孔质材料润滑理论的基础上,结合多孔质瓦块的运动方程,建立了多孔质可倾瓦轴承的理论模型。通过牛顿迭代法和有限差分法实现了多孔质可倾瓦轴承静压特性的求解,采用小扰动法求解多孔质可倾瓦轴承的动态特性。将多孔质瓦块的承载能力和气体流量的预测结果与文献中的结果进行对比,验证了理论模型的准确性。分析了多孔质可倾瓦轴承的静压效应和动压效应的作用机理,明确了轴承间隙的合理范围,讨论了轴承间隙、供气压力、瓦块的径向刚度和转动刚度对轴承偏心率、气体流量以及动态特性的影响。(2)为了更加准确的预测轴承中轴颈的运动情况,将轴颈的运动方程,瓦块的运动方程和气体流动方程进行耦合,建立了多孔质可倾瓦轴承的非线性模型。讨论了外部供气压力对多孔质可倾瓦轴承稳定性的影响,分析了供气压力,轴承间隙,瓦块的径向刚度、转动刚度和供气方式对轴承非线性特性的影响。研究多孔质可倾瓦轴承的非线性特性,有助于理解轴承供气压力以及轴承参数对轴承稳定性的影响,为多孔质可倾瓦轴承的结构设计提供理论依据。(3)设计、搭建了多孔质可倾瓦轴承支承的轴承-转子实验台。分析了转子不转动时,轴承供气压力对转子悬浮高度和轴承流量的影响。通过降速实验,研究了轴承供气压力、供气方式以及不平衡质量对转子系统动态响应特性的影响。(4)建立了多孔质可倾瓦轴承支承转子系统的动力学模型。模型中考虑了刚性转子模型,气体在多孔质材料内部与气膜层的流动方程、瓦块的运动方程和转子的运动方程。分析了系统产生次同步振动的原因,以及转子质量、供气压力、瓦块预载、瓦块安装方式对轴承-转子系统动力学响应的影响。综上所述,本文提出了多孔质可倾瓦轴承结构,建立了多孔质可倾瓦轴承的理论模型和轴承的非线性模型。通过理论分析的方法,讨论了轴承参数对多孔质可倾瓦轴承静、动态性能以及非线性特性的影响。搭建了多孔质可倾瓦支承的轴承-转子实验台,验证了多孔质可倾瓦轴承在高速旋转机械领域应用的可行性,分析了转子动态响应特性在不同供气压力,不同不平衡质量条件下的变化情况。建立了多孔质可倾瓦轴承支承转子系统的理论模型,分析了系统参数对轴承-转子系统动力学响应的影响,为进一步将多孔质可倾瓦轴承应用到高速旋转机械进行了探索。