【摘 要】
:
基于光与原子相互作用的光放大效应,是原子非线性效应的重要体现之一,在制备新型的纠缠关联光场、光学非互易传输以及全光控制量子器件等领域有着重要的研究价值。从上世纪末至今,人们对基于原子相干的光学非线性效应进行了大量的研究,并发现许多经典有趣的物理现象,比如相干布居俘获、电磁诱导透明、电磁诱导吸收、四波混频效应等。而基于原子相干的四波混频已经成为当前量子信息处理的一个重要研究方向。其中比较著名的研究内
论文部分内容阅读
基于光与原子相互作用的光放大效应,是原子非线性效应的重要体现之一,在制备新型的纠缠关联光场、光学非互易传输以及全光控制量子器件等领域有着重要的研究价值。从上世纪末至今,人们对基于原子相干的光学非线性效应进行了大量的研究,并发现许多经典有趣的物理现象,比如相干布居俘获、电磁诱导透明、电磁诱导吸收、四波混频效应等。而基于原子相干的四波混频已经成为当前量子信息处理的一个重要研究方向。其中比较著名的研究内容之一就是在基于双Λ型三能级碱金属原子系统中,通过受激的四波混频过程产生大频差量子关联光场,由于其在较宽的频带范围内具有高增益、高纠缠度等特性而受到人们重视和广泛应用,例如,高灵敏度光谱探测、远距离量子通信和量子成像等,其研究进一步丰富了四波混频的物理内涵。本文基于热的Cs原子介质,实验研究了基于简并二能级系统的光放大效应。研究内容主要分为以下四部分:一:对光放大效应的科研背景、应用以及相关的产生光放大的方法进行了简单的介绍。二:基于Cs原子D1线,利用25mm Cs泡在实验上研究了简并四波混频诱导的光放大效应。结果发现,只有当基态的角动量大于或等于激发态的角动量(gF≥Fe)时,才能由电磁诱导透明效应转变为非线性四波混频效应,并且在Fg=Fe条件下可获得效率更高的简并四波混频信号。三:基于第二章得到的实验结果,首先从二能级系统下的所有塞曼子能态给出定性的分析。分析表明,基态塞曼子能级之间能形成稳定的Λ型相干暗态链是产生四波混频的必要条件,而N型循环跃迁路径导致初始抽运子能级的有效原子布居是简并四波混频产生光放大效应的诱因。理论上,我们通过构建一个N型跃迁能级,理论模拟了逐渐提高泵浦光拉比频率,实现系统由透明效应转变为增益的光放大过程。四:在第二章的实验结果的基础上,详细研究了三种简并能级结构下的简并四波混频,讨论了泵浦光功率、原子数密度以及泵浦光频率失谐等物理参量对简并四波混频的影响。重点研究了如何提高光放大效率的方法。实验发现,在不改变原子泡长度的前提下,通过额外引入一束852nm的抽运光,并选择合适的抽运能级,可显著提高简并四波混频的放大效率。除此之外,以Fg=4→Fe=4能级为例,通过增加原子汽室的有效长度来提高简并四波混频的效率,并分析了泵浦光功率、信号光功率、单光子失谐以及原子数密度对简并四波混频效率的影响。
其他文献
随着传统技术测量灵敏度的不断提高,在未来复杂电磁环境下,雷达探测技术面临探测灵敏度受量子噪声限制以及易被杂波背景噪声干扰等难题,对环境态势感知提出了严峻的挑战。复杂的电磁环境要求雷达系统具有极强的抗干扰能力与抗杂波能力,以提升雷达的探测性能。传统雷达容易受背景噪声和损耗的影响,限制了雷达探测目标和环境感知的性能。量子雷达是一种在经典雷达的框架中引入量子技术的新型雷达探测技术,利用与经典电磁学不同的
在厄米量子力学领域中,我们假定量子系统处于封闭的孤立状态。在这样理想情况之下,系统不会发生耗散,其可观测物理算符为厄米算符,即具有实数本征值。而在实际情况中,量子系统总会与其所处的环境通过驱动和耗散、涨落过程相互耦合,同时会与环境有物质和能量的交换从而产生耗散,称之为量子开放系统。由于将环境对系统的干扰因素占比太大,厄米系统已经不足以去解决这些实际物理问题。尤其,在量子通信传输领域,环境对压缩光、
随着量子信息的快速发展,量子通信成为了科技界的研究热点。量子通信的远距离传输,需要在遥远的两个网络节点之间建立纠缠。目前长距离光量子网络的实现仍存在很大的挑战。2001年,段路明等人提出了一种基于原子系综的DLCZ(Duan-Lukin-Cirac-Zoller)量子中继方案,这个方案结合了原子系综中的量子记忆和纠缠交换,克服了光纤中的指数损耗问题,为长距离量子通信的研究奠定了基础。量子网络通常是
上世纪80年代,随着量子理论与方案的不断完善,量子信息做为一个新兴的研究领域得到了人们的关注。量子通讯作为量子信息最重要最核心的部分,其最吸引人们的特性在于可以实现物理层面的信息安全传输,而这种安全基于一种奇特的量子态---光量子纠缠态。量子存储是实现长距离量子通讯、构建光量子网络的关键技术,它要求能够对光量子态进行长时间的存储和高效的相干读出。目前,人们已经利用许多物理过程如电磁感应透明(Ele
随着1960年世界上第一台激光器的研制成功,被称为“最快的刀”、“最准的尺”、“最亮的光”的激光开始了它在科研及社会生活各领域内的应用,大大推进了科技的发展和社会的进步。通过将它应用于微观世界,人们也能更加精确地认识宏观世界的本质与奥妙。20世纪末,朱棣文等人因为在超冷原子领域的开创性研究而获得了诺贝尔物理学奖,自此,超冷原子系统作为一个人为可控平台开始活跃在物理学的诸多前沿研究中,光与原子的相互
碱金属原子的超精细结构的测量是人们关注的重要问题。对于碱金属原子S态和P态的超精细结构,实验结果与理论预测一致。然而,由于强关联效应和屏蔽效应,碱金属原子D态的超精细结构测量一直以来是一个巨大的挑战。由于碱金属原子从S态激发到D态不能通过基态的单光子跃迁来实现,而可以通过双光子跃迁来实现。为了减小多普勒展宽效应,采用无多普勒双光子光谱进行较为精确的测量。该技术结合选定的激光频率,可以确定室温下碱金
量子信息科学是量子物理与信息科学交叉融合而迅速发展起来的新兴前沿学科,由于它可以提供在原理上绝对安全的通信和巨大的并行计算能力,使其成为科技界的重点研究方向。量子网络是目前量子信息领域的一个重要研究任务,量子信道和量子节点是组成量子网络不可或缺的部分。量子信道用于传输量子信息,量子节点处理信息的提取、存储和纯化等工作。俘获的离子、原子和量子点等介质都可以作为量子网络的节点。以原子为介质搭建量子节点
里德堡原子是一种激发态原子,其中最外层电子被激发到主量子数很大的能级。因其具有较大的原子半径与极化率、与外场强的耦合作用以及较长的辐射寿命等奇异特征,使里德堡原子在量子传感、量子信息、量子模拟、电场测量、微波场测量以及超冷等离子体等方面都有重要的应用。里德堡原子的寿命测量不仅对偶极矩阵元、散射长度和极化率的理论计算非常重要,而且对波函数的确定、黑体辐射的研究以及光电离率的测量也非常有意义。本文展示
量子纠缠,作为量子光学中最有吸引力的研究方向之一,不仅仅能帮助人们更深入地理解量子力学中的某些基本问题(如量子非局域性、量子退相干机制、波函数塌缩机制等),而且也是量子计算、量子信息处理以及构建量子网络过程中非常重要的量子资源。连续变量量子纠缠态光场,在实现量子计算指数加速、可扩展性和较强的纠错能力方面有着特有的优势。制备连续变量纠缠态光场的传统方法是利用光学参量过程,主要集中在光频波段,在能量守
在过去的几十年中,除了研究量子力学的基本概念外,量子光学的发展也很迅速,尤其是压缩态光场。压缩态是噪声分布被压缩的相干态,即一种非经典现象,由于其某个正交分量的量子噪声低于经典散粒噪声极限,根据这种特点我们可以将压缩态光场应用在很多领域,如:精密测量、量子通信、量子雷达等。压缩态光场的产生方式有多种,其中光学参量振荡是一种很有效的方法,它是在一个OPO腔中,根据晶体的非线性效应来发生光学参量下转换