纯电动汽车优化混合电源能量管理策略研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:a15813225802
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
再生制动技术是提升纯电动汽车续驶里程的重要技术手段之一,然而再生制动会导致动力电池在充放电模式下频繁切换,且大电流放电会降低动力电池的使用寿命。超级电容物理存储电能的性质决定其具有很好的快速充放电能力且循环寿命长,结合二者的优势可以组成车用“动力电池/超级电容”混合电源系统。本文以提高汽车动力电池循环寿命和实现再生制动为目标,基于“动力电池/超级电容”混合电源系统的思想优化汽车动力系统。具体地,采用较少数量的超级电容作为辅助电源对动力电池进行保护,汽车制动产生能量储存至超级电容,起步时作为动力电池输出电功率的补充。基于纯电动汽车的工作环境,研究了基于汽车制动“概率事件”和制动“类能量”占比两种再生制动临界速度分析方法,确定了纯电动汽车制动能量回收临界速度;通过整车能量流模型得出制动动能传递到优化混合电源系统的能量传递效率,结合两种临界速度界定方法确定优化混合电源系统的超级电容容量;分析了双向DC/DC变换器对应纯电动汽车不同运行状态下的工作模式,详细阐述了双向DC/DC变换器的工作原理;分析确定不同的工作模式下双向DC/DC变换器的的控制方式和控制目标,建立了变换器系统的动态模型,基于模型的传递函数设计了控制器参数;基于SIMULINK的优化混合电源的模型以及优化混合电源系统微型实验平台,仿真和实验分析了优化混合电源系统与单电源系统的循环工况结果,通过电池容量损耗模型定量阐述优化混合电源系统对动力电池的优化作用。
其他文献
The brake-by-wire(BBW)actuator is a modern form of actuator that replaces some of the mechanical and hydraulic components of conventional actuators completely or partially with the electronic control
学位
文化自信就是当代中国的精髓,其不但是构建社会的基础,更是实现文明社会的核心关键。在大学阶段,语文教育是最基础的一部分,将语文教学深入到大学教育中,不但可以使中华文化得以传承,还能使人文精神得到弘扬,除此以外,大学语文还能使学生的文化素养得到提升,进而使大学生的文化自信得以增强。基于以上内容,在大学阶段的语文教学过程中,进行相应的课程建设,并将现实中遇到的问题进一步挖掘并解决,与此同时,还要坚持我国
车辆可行驶路面区域的确定以及影响行驶的相关范围内的障碍物检测是保证智能汽车在无人驾驶过程中安全性与鲁棒性的关键技术。它不仅可以为智能汽车换道避障以及超车等提供准确合理的路径规划约束,还可以为智能汽车的主动制动提供安全的距离信息。本文以实验室智能汽车为实验平台,以VLP-16线激光雷达作为车载传感器,对路面分割和障碍物检测展开研究。首先,对激光雷达的数据进行解析,求解了在雷达球面坐标系下各点云的角度
半挂汽车列车在近几十年的路面运输过程中,因为其载重量大、运输效率高及成本低、节油性好等优势已经成为物流运输行业的主力军。然而,由牵引车、半挂车组成的半挂汽车列车在直线行驶时的动力学状况是开环稳定的,但由于其高度的非线性、非完整约束、不稳定性、不确定性等特征,半挂汽车列车在倒车行驶时的动力学状态是开环不稳定的。实际运输过程中,半挂汽车列车倒车安全难以得到保障,倒车难度极大,倒车效率难以提升。因此,本
党史教育是落实新时期高校立德树人根本任务的重要内容和迫切要求。地方高校应立足校情和驻地党史教育资源状况,充分挖掘和利用驻地红色文化资源,开展内涵丰富、形式多样的党史教育,应增进校地合作,深度开发"红色资源+党史"的资源价值;明确学生需求,科学打造"红色资源+党史"的教育课程;强化环境育人,积极营造"红色资源+党史"教育校园氛围;加强教师培训,大力培养"红色资源+党史"的师资队伍。
农产品直播带货在一定程度上能够有效解决农产品销售难的问题。云南省昭通市位于云贵川接合部,农特产品丰富,开展农特产品直播带货有利于产品销售,增加农民收入,促进农村经济发展。文章从昭通特色农产品产销现状入手,进一步分析昭通农特产品直播带货过程中面临的困境,最后提出打造特色农产品品牌、利用供应链制定统一的品质标准、打造专业化直播带货营销管理团队、建立区域农产品电商发展模式等解决对策,旨在借助直播带货提高
汽车的出现不仅促进了社会的发展,也推动了各国的经济的进步,同样也带来了人民群众在生活上的便利。但是近些年来,随着各国家的汽车保有量持续激增,能源危机和环境污染的问题日益突出。面对这些问题,新能源汽车的出现既可以减少CO2排放量,也可以降低对不可再生能源的依赖。因此全球各个国家已经对新能源产业开始大力的支持和投资,各国的新能源汽车也像雨后春笋般不断出现在人们身边。新能源汽车快速的发展依赖于锂离子电池
高硅铝合金作为近年来迅速发展的新型电子封装材料,具有较高的比强度、较低的热膨胀系数、较高的热导率以及优异的机械加工性能,被广泛应用于电子封装领域。同时,激光焊接具有焊接速度快、熔池深宽比大、焊后变形小等优点,已成为高硅铝合金电子封装盒体的主要封装焊接方法。但是高硅铝合金激光封焊后易存在气孔、热裂纹等焊接缺陷,且焊缝会存在分布不均匀的残余应力,封装盒体在真空环境下服役时会对盒体气密性、焊缝强度造成影
面对日益严峻的环境恶化及能源危机问题,发展以纯电动汽车为主的新能源汽车成为汽车行业发展的必经之路。在电动汽车发展过程中,续航里程不足成为制约其推广的主要技术瓶颈之一。本文以某国产电动汽车为原型,从降低空气阻力系数、减少行驶能耗的角度出发,提出电动汽车前舱进气风道结构,基于计算流体力学(CFD)基础理论,对整车及前舱展开流场分析和热分析,并对风道进行结构优化。本文主要研究工作如下:首先,本文在参考国
纳米WC-Co复合粉末是制备高性能超细硬质合金的重要基础材料。本论文采用喷雾干燥-煅烧-机械粉碎-还原碳化-气流粉碎制备原位合成纳米WC-Co复合粉末;并以复合粉末为原料,采用湿磨-压力式喷雾干燥-掺成型剂-压制成型-低压烧结制备出高性能硬质合金球和硬质合金棒料。在此基础上,系统研究了Co含量为6%的纳米WC-6Co复合粉末,并通过增加Co含量,制备出强度、硬度高,Co含量为10%的高性能超细硬质