论文部分内容阅读
针对目前工业生产超高压烧结条件下cBN难以成型的问题,运用材料学、高压物理、粉末冶金学、力学、机械学等理论知识,通过XRD、Raman、HRTEM、SEM等现代测试分析手段,研究了高压烧结压力、温度、时间以及粒度大小对cBN微粉高压高温烧结行为的影响,重点研究了cBN在超高压烧结过程的塑性流变机制主导引发的烧结体塑性变形行为及其聚结机理,并在国产Y650型六面顶设备工业化生产条件(6.2GPa,2000℃,240s)下成功研制出高性能的纯PcBN刀具材料。为了揭示高压烧结中压力在cBN烧结过程中的作用机制,本文采用拉曼光谱应力测试、XRD线形分析技术,进行了四种单一粒度cBN微粉的超高压冷压(6.2GPa)塑性变形行为及脆性断裂碎化规律实验研究。拉曼光谱测试结果表明,较粗的W15-25微粉的内应力高达1.75~2.20GPa,已接近cBN粉末脆性断裂强度,而细粒度W1-2微粉中内应力仅为0.403~0.785GPa,其内应力增幅高达332.41%。认为粗颗粒cBN微粉超高压冷压碎化,是其冷压后粒度分布明显扩大的原因。进一步通过XRD线形分析技术,计算了cBN超高压冷压后的微应变ε、总层错几率f及形变层错几率fD,结果表明粗颗粒W15~25样品的微应变ε、总层错几率f及形变层错几率f D分别为-1.50×10-3,7.50×10-3、22.72×10-3,比细颗粒W1~2样品分别提高了74.4%、50%和290%,说明在相同压力下cBN粗颗粒冷压塑性变形比细颗粒大得多,粗颗粒cBN塑性变形可能以形变层错发生,而细颗粒cBN发生形变层错概率极低。通过cBN超高压冷压下颗粒塑性变形大小和脆性断裂碎化程度的差异,首次提出了cBN微粉超高压塑性变形和冷压碎化模型。通过SEM和ImageJ图像分析技术,系统研究了烧结工艺对纯cBN烧结体的致密性和性能的影响。研究表明,在固定原始cBN粒度8-12μm、烧结压力6.2GPa和烧结时间240s条件下,随着烧结温度从1550℃上升到2000℃,cBN烧结样品面孔隙率ω由4.05%下降到0.2%左右,孔隙缩小到D<1.0μm以下,孔隙圆度R趋向于0.82~1.0,接近圆球化,相对密度ρ也从92.1%提高到99%左右;在固定烧结压力6.2GPa和烧结温度240s条件下,随着烧结时间从180s延长到240s,其样品面孔隙率ω从4.46%急剧减少到0.21%,孔径从D<2.5μm缩小到D<1.0μm,同时孔隙圆度R增大到0.64<R<1.00,逐渐趋近于圆球状,相对密度从约92%上升到99%左右;继续升高温度和延长烧结时间,其烧结体样品致密化参数变化较小,推断温度2000℃、时间240s烧结cBN样品致密化过程已完成;但在此烧结条件下,随着烧结压力从5.6GPa升到6.2 GPa,其烧结样品的磨耗比和抗压强度分别从4760和1.78GPa提高到10200和2.37GPa,之后继续升压其烧结样品的磨耗比和抗压强度呈继续增加趋势。由于本实验烧结温度不到cBN体积扩散温度,推断其烧结致密化机制为塑性流动和表面扩散机制,并认为cBN烧结致密化过程的主要因素是压力,主要烧结机制为塑性流变机制,其次才是影响表面扩散机制作用的烧结温度和时间。为进一步揭示粒度诱导的超高压高温塑性流变行为和烧结致密化规律,本文采用四种不同粒度的cBN微粉为原料在最佳烧结条件(6.2GPa、2000℃、240s)下,考察了不同粒度cBN超高压烧结样品的微结构与性能的差异。拉曼光谱测试分析表明,粒度为W15-25和W8-12烧结的cBN样品中的内应力比W1-2粒度烧结样品分别提高了210.0%~331.7%和168.0%~266.67%。不同粒度cBN烧结体的性能测试结果表明,W15-25烧结样品维氏硬度、抗压强度和耐热性比W1-2烧结样品分别提高了23.41%、58.02%和118.9%。因此,得出不同粒度cBN烧结体微结构与性能上的差异可能是由于高压烧结中cBN晶体内应力差异引起的塑性流变机制差异造成的。进一步采用X射线线形分析技术,计算了不同粒度cBN烧结体微应变ε、形变层错几率f D及孪晶层错几率f T,通过高分辨率透射电镜(HRTEM)观察分析了不同粒度cBN烧结体内的塑性变形情况。XRD线形分析结果表明,粗粒度W15-20烧结样品的微观应变ε(-0.43×10-3)和孪晶层错几率f T(1.89×10-3)最低,仅为细粒度W1-2样品相应微观应变ε(-1.4×10-3)的1/3左右以及孪晶层错几率f T(23.93×10-3)的十二分之一,但形变层错几率f D为6.54×10-3,比细粒度烧结样品的f D(0.646×10-3)高10倍左右;而中粒度W8-12样品则同时具有很高的微观应变ε(-1.5×10-3)、较高的孪晶层错几率fT(14.18×10-3)和形变层错几率f D(6.28×10-3),表现出明显的临界粒度效应。这表明粗粒度W15-25烧结样品塑性变形以高密度位错、形变层错为主,细粒度W1-2烧结样品以形变孪晶层错为主,中粒度W8-12样品则兼顾形变层错和孪晶层错两种塑性变形。HRTEM观察分析表明,粗粒度W15-25烧结体cBN晶界存在大量位错和层错,细粒度W1-2烧结体中存在大量cBN孪晶,而中粒度W8-12烧结体中cBN晶界既存在大量位错和层错还发现有大量孪晶,证明了上述XRD线形分析结果的正确性。基于上述研究结果,提出了粒度诱导的cBN超高压烧结塑性变形作用机制及其聚合机制。即粗粒度cBN超高压烧结以形变层错塑性流动回复再结晶结合;细粒度cBN超高压烧结以形变孪晶层错运动引起再结晶结合;中粗粒度cBN烧结样品聚结机制介于二者之间,同时以形变层错和孪晶层错塑性流动再结晶结合。这是引起本实验cBN超高压烧结粒度效应背后的物理本质。结合上述研究结果,在工业适用的最佳烧结条件(6.2GPa、2000℃、240s)下研制了混合粒度(W8-12、W3-6及W1-2配比为7:2:1)的纯PcBN刀具材料,其维氏硬度和耐热温度分别为4232.7、1236.7℃。XRD线形分析结果表明,该样品中的形变层错几率f D较低(2.01×10-3),而孪晶层错几率f T很高(19.79×10-3),说明该样品兼顾粗、细两种粒度的塑性变形方式;TEM/HRTEM观察发现该样品cBN晶界高密度位错、层错和孪晶晶界以及由此引起的亚晶界、再结晶和孪晶cBN晶粒,证明了该材料同时具有粗、细粒度两种cBN聚结机制,使得超高压烧结出的纯PcBN刀具材料的物理力学性能得以改善。采用本文研制混合粒度纯PcBN刀具与国外DI公司和韩国日进公司商用PcBN刀具进行了高速硬态干切削淬硬钢对比试验,结果表明:当采用进给量为0.1mm/r,背吃刀量为0.1mm、切速为150r/min时,切削5min.后其后刀面磨损VB0.172mm比DI公司刀具VB0.133mm大,但比日进公司刀具VB0.2mm小,继续加工30min.后其后刀面相对磨损速率为44.54%,比国外两公司刀具相应磨损速率155.77%、131.76%低许多。这说明经过切削磨合期后,本文研制纯PcBN刀具比国外刀具切削性能更稳定。其加工表面粗糙度Ra随着切速增加先增加,但切速大于250r/min.时随着切速增加Ra反而降低,这与国外刀具随着切速增加Ra先下降后上升的加工规律相反。当切削速度≥450r/min.时,其加工表面粗糙度Ra与国外刀具加工Ra值相当,并呈下降趋势。这表明本文研制纯PcBN刀具更适合切速大于450r/min.硬态干切削加工。