【摘 要】
:
BiFeO3是一种单相多铁材料,具有高铁电居里温度、高反铁磁奈尔温度和高剩余铁电极化强度等优点,可以应用于非易失存储器件。本论文利用磁控溅射方法制备了BiFeO3薄膜及其异质结构,系统研究了BiFeO3薄膜的微观结构与磁特性及其异质结构的电输运特性和磁特性。在BiFeO3/LaAlO3异质结构中,随着BiFeO3薄膜厚度增加,BiFeO3薄膜发生了由高应变类四方相→类四方相→倾斜的MC相→中间倾斜
【基金项目】
:
国家自然科学基金(51772207、11434006、11704278、51272174);
论文部分内容阅读
BiFeO3是一种单相多铁材料,具有高铁电居里温度、高反铁磁奈尔温度和高剩余铁电极化强度等优点,可以应用于非易失存储器件。本论文利用磁控溅射方法制备了BiFeO3薄膜及其异质结构,系统研究了BiFeO3薄膜的微观结构与磁特性及其异质结构的电输运特性和磁特性。在BiFeO3/LaAlO3异质结构中,随着BiFeO3薄膜厚度增加,BiFeO3薄膜发生了由高应变类四方相→类四方相→倾斜的MC相→中间倾斜相→类菱形相的转变。在17 nm厚的BiFeO3薄膜中,BiFeO3相是高应变类四方相BiFeO3。由于高应变类四方相BiFeO3内非对称Fe O5五面体诱导的自旋倾斜产生净磁矩,BiFeO3薄膜表现出巨大净磁矩。在Pt/Fe/BiFeO3/SrRuO3异质结构中,本论文研究了电阻态转变与电容态转变行为。Pt/Fe/BiFeO3/SrRuO3异质结构的阻变行为与铁电极化调控的BiFeO3/SrRuO3界面附近的耗尽层宽度有关。在负偏压下,其导电机制是Fowler-Nordheim隧穿机制;在正偏压下,其导电机制是空间电荷限制电流机制。Pt/Fe/BiFeO3/SrRuO3异质结构的容变行为与电场调控的铁电畴(数量、畴壁、极化方向)、耗尽层宽度、耗尽层内的载流子浓度分布有关。外加正偏压下,Pt/Fe/BiFeO3/SrRuO3异质结构表现出低电容态;而外加负偏压下,其表现出高电容态。同时,在光照下处于低电容状态的Pt/Fe/BiFeO3/SrRuO3异质结构电容明显增加,而在光照下处于高电容状态的Pt/Fe/BiFeO3/SrRuO3异质结构电容明显减小,这种现象主要与铁电极化调控的BiFeO3/SrRuO3界面附近光生载流子聚集而引起的耗尽层宽度变化有关。此外,本论文还研究了单轴应力对Fe3O4/云母、Fe3O4/BiFeO3/Pt异质结构磁特性的影响。外加单轴压应力下,Fe3O4薄膜的Verwey转变温度提高、饱和磁化强度增加;外加单轴张应力下,Fe3O4薄膜的Verwey转变温度降低、饱和磁化强度增加。这种Verwey转变温度和饱和磁化强度的改变源于单轴应力导致的Fe3O4薄膜内FeA3+和FeB2+离子之间电荷转移。施加单轴应力,Fe3O4/BiFeO3/Pt异质结构的交换偏置效应减弱,物理机制是单轴应力改变了Fe3O4/BiFeO3界面处Fe A-O-Fe BiFeO3的键长和键角,并且减少Fe3O4/BiFeO3界面处Fe3O4内FeA3+离子数量,导致Fe3O4/BiFeO3界面处FeA-O-Fe BiFeO3超交换相互作用减弱。
其他文献
编织陶瓷基复合材料(Woven Ceramic Matrix Composites,WCMC)不仅继承了陶瓷材料高比刚度、耐高温、耐腐蚀、低密度的优势,并且因为编织纤维的增强,使其具有了高比强度、高韧性、耐磨损的卓越性能。因此,这种材料被广泛应用于众多先进技术领域。由于WCMC是一类新型材料,对其进行机械加工,并将其合理、可靠地应用于实际工程场景,都面临着不同于传统材料的困难与挑战。为了实现WCM
高氮奥氏体不锈钢是一种高强度、高塑性和有优秀的抗腐蚀性能的不锈钢,然而,高氮奥氏体不锈钢在焊接过程中容易发生氮逸出,形成氮气孔和氮化物等缺陷,降低高氮不锈钢焊接接头的力学性能和抗腐蚀性能,严重限制高氮不锈钢的广泛使用。为了提高焊接接头的力学性能和抗腐蚀性能,采用绞股焊丝熔化极气体保护焊(GMAW)对高氮奥氏体不锈钢进行焊接。本文围绕高氮奥氏体不锈钢焊接性和绞股焊丝GMAW进行研究,为工业应用提供了
石墨烯是金属基复合材料的理想增强体,因具有优异的力学、电学和热学等性能而被广泛地应用于铝基复合材料。然而,石墨烯和基体之间的界面问题、石墨烯在铝基体中的分散问题、以及石墨烯的制备问题影响着石墨烯增强铝基复合材料的性能提高及应用。现有方法制备的石墨烯增强铝基复合材料的性能和理论值相比仍有较大差距,且存在强韧倒置的关系,因此,寻求新的制备技术以克服现有方法的不足是发展石墨烯增强铝基复合材料的关键。本论
稳定性问题是力学领域中的经典问题。失稳现象广泛存在于自然科学、工程以及生物医学等领域中。与平面结构相比,某些材料的管状结构由于曲率的影响,往往具有不同的失稳特性。为探索曲率对结构失稳现象的影响,本文结合理论分析、数值仿真与实验验证,分别研究了软材料和剪纸超材料的管状结构在不同载荷及边界条件下失稳类型的差异以及失稳后结构形貌的演化规律,并将两种材料结合在一起,利用其各自的变形特性,设计了可充气剪纸结
钛合金由于优异的材料性能,广泛应用于飞机关键零部件的制造。但作为典型难切割材料,钛合金高强、高韧的特点使传统加工技术面临严峻挑战。射流电解加工,是利用金属阳极在电解液射流中定域溶解的原理,借助喷嘴阴极运动制造任意复杂结构的一种新型电解加工技术,其兼具电解加工和数控加工的优点,是一项极具潜力的钛合金零部件精密加工技术。本文以TB6钛合金为研究对象,针对TB6钛合金射流电解加工机理和关键工艺进行研究。
铝基复合材料(AMC)具有比强度和比模量高、热稳定性好、导热性优良等特点,广泛应用于航空航天、发动机制造、精密仪器等领域。晶须增强AMC兼具高强度和良好的加工性,显示出独特的应用前景。目前制备晶须增强AMC的方法主要是外加法,该方法存在晶须难分散、界面结合差、易发生界面反应、晶须结构易破坏等问题。而在基体中原位合成晶须不仅能够避免这些问题,而且可以通过结构设计实现在提升强度的同时保持足够韧性。因此
立方氮化硼(cBN)因其优异的物理化学和机械性能尤其是不与铁系元素反应而备受关注,在精密机械加工、电子和光学器件等领域具有广阔的应用前景。本文采用高温高压烧结法制备立方氮化硼复合材料,研究cBN原料、结合剂组成和烧结制度与性能的相关性;分析了弥散颗粒、晶须和Y2O3对cBN复合材料力学性能的影响;对实验制备的cBN复合材料进行切削高温镍合金的实验加工验证研究,并与商用知名品牌刀具对比。本论文的主要
抗生素滥用会导致细菌耐药性增加,甚至促使超级细菌出现。因此,针对不依赖抗生素的抗菌策略的开发迫在眉睫。由于金属有机框架材料具有多种优异性能,例如多孔性的结构、可调控的成分和易于修饰的表面,这类材料被广泛应用于多个领域。本文针对PCN 224和普鲁士蓝两种具有优异生物安全性的MOF材料进行功能化修饰,设计出多种不依赖抗生素的MOF基光控抗菌材料,并通过动物实验证实了这些材料可以高效快速地治疗并修复被
共价有机框架材料(Covalent Organic Frameworks,COFs)由轻质元素组成,通过共价键相连接而成的一类结晶性聚合物,近十年来发展迅猛,受到广大科研工作者们的关注。COFs材料具有良好的热/化学稳定性、结构可设计性、孔结构可调节性、高比表面积等优点,被广泛应用在气体存储与分离、催化、光电和生物医药等领域。通过不同的设计策略,可对COFs材料进行结构和功能化调控。根据材料在不同
尖晶石铁氧体具有高电阻率、高初始磁导率、低矫顽力、低涡流损耗、良好的阻抗匹配和高介电损耗,是一种重要的磁性材料,被广泛地应用于变压器、传感器、隐身涂料、磁性药物传输和水处理等各种现代器件和技术中。本论文从三个方面入手对尖晶石铁氧体进行了深入的研究。第一,通过元素替代的方式优化了铁氧体的软磁性能;第二,研究了铁氧体的微波吸收和电磁屏蔽性能;第三,将铁氧体与硅酸镁材料复合,对其染料吸附能力进行了研究。