论文部分内容阅读
本论文首次将Sage-Husa自适应Kalman解调算法应用于微机械陀螺数字检测系统的二次解调过程,用于克服时变噪声引起的解调结果发散及精度下降的问题。其优势在于该算法无需先验观测噪声的统计特性,在解调滤波过程中引入了时变噪声估计器,根据系统的测量值以及解调估计值,实时地对观测噪声进行估计,同时修正解调过程的参数,以提高解调的稳定性和精度,从而能快速、实时、准确地解调出输入的角速度信号。进一步地,将此算法同最小均方(LMS)解调算法、递推最小二乘(RLS)算法、乘法的相敏解调算法的性能进行了仿真比较。结果表明,自适应Kalman算法具有很好的响应时间和收敛速度,对角速度变化的跟踪能力和对时变噪声滤除能力方面都要强于后三种算法,其解调结果误差的RMS值小于其他算法5dB以上,抑制噪声水平提高43.8%以上。证明了Sage-Husa自适应Kalman解调算法具有最优的综合性能。
其次,本论文采用数字PID控制器同自适应Kalman二次解调算法相结合的方式,设计了适合于数字检测系统的驱动控制方案。同时,通过对驱动力到振动位移之间幅度变化的传递函数的线性化,合理地调整了数字PID控制器的参数,实现了驱动模态的恒幅振荡,即使得产生的哥氏力与输入角速度成线性变化,以实现角速度的精确测量。
最后,对微机械陀螺数字检测系统的进行了整体的仿真。仿真结果表明,在公开发表的微机械陀螺物理参数设定下,对于带宽为50Hz的随机角速度以及检测轴输入信噪比为-11.36dB的条件下,陀螺的角速度测量输出的信噪比为8.17dB,解调增益达到了19.53dB。本仿真系统可以很好的反映陀螺测量过程,对实际系统的设计和搭建具有指导意义。