论文部分内容阅读
蛋白质稳定性研究在蛋白质结构和功能的相关理论研究以及蛋白质药物生产等应用领域方面均具有重要意义。已有研究表明,多羟基类渗透剂海藻糖能够有效提高蛋白质稳定性。但海藻糖抑制蛋白质脲和酸变性的分子机理、热力学和动力学行为等尚不清晰。针对上述问题,本文利用分子动力学模拟和多种实验方法,系统研究了海藻糖对于蛋白质脲和酸变性的抑制作用。 在海藻糖抑制蛋白质脲变性方面,首先采用全原子分子动力学模拟方法,研究了海藻糖抑制蛋白质脲变性的分子机理。研究发现,海藻糖通过氢键与脲发生直接相互作用,使得脲和海藻糖一起在蛋白质表面被优先排阻,从而抑制了蛋白质的脲变性。随后应用停流荧光光谱研究了海藻糖抑制蛋白质脲变性的动力学行为,发现低浓度海藻糖不能改变蛋白质脲变性的展开路径,但快速展开阶段的速率常数和振幅均随海藻糖浓度增大而降低;高浓度的海藻糖使蛋白质脲变性展开途径由双阶段转变为单阶段,且其速率常数和振幅也均随海藻糖浓度增大而逐渐降低。 在海藻糖抑制蛋白质酸变性方面,首先采用多种光谱技术研究了海藻糖对蛋白质酸变性的抑制作用,发现海藻糖能够诱导酸变性的蛋白质形成熔球态。停流荧光光谱检测发现,低浓度海藻糖对蛋白质脲变性的展开路径基本没有影响,但高浓度海藻糖使三阶段的酸变性展开路径转变为双阶段。三个展开阶段的速率常数均随海藻糖浓度增大而线性降低,与此同时,快速和中间阶段的振幅随海藻糖浓度增大而逐渐降低,但对于慢速阶段的振幅变化无明显影响。因此,海藻糖抑制蛋白质酸变性的动力学行为主要是通过限制蛋白质去折叠过程中的构象变化并降低蛋白质伸展速率。 在上述研究的基础上,进一步开展了海藻糖和NaCl协同抑制蛋白质酸变性的研究。荧光光谱实验及热力学分析证实了海藻糖和NaCl能够协同抑制蛋白质酸变性。通过停流荧光光谱数据的分析发现,随着NaCl浓度和/或海藻糖浓度的增大,蛋白质酸变性展开过程的动力学途径由三阶段依次转变为双阶段和单阶段展开途径。海藻糖和NaCl协同抑制蛋白质酸变性的动力学行为,主要是通过限制蛋白质去折叠过程中的构象伸展程度,而对于蛋白质构象伸展速率没有明显影响。