论文部分内容阅读
在过去的20年中,我们组提出并发展了氢键诱导的“非共价键接胶束”(NCCM)的概念,已在该领域取得了丰硕的研究成果。最近,我们又将主-客体间的分子识别作用引入到大分子自组装研究领域,进一步扩充、深化了原有的NCCM研究体系。本论文的研究工作是在本课题组已有研究工作的基础上开展的。主要是利用环糊精与客体分子间的包结络合作用,在聚合物空心球的表面修饰、自组装有机-无机杂化超分子凝胶制备等方面展开研究:1.基于包结络合作用的聚合物空心球的表面修饰我们将作为主体分子的环糊精引入到半刚性聚合物链的两端,发现该端基修饰的刚性聚合物在水溶液中可以形成单层空心球结构。作为主体分子的环糊精均匀地分布在这种单壁空心球的内、外壁,因此可进一步通过主-客体分子间的包结络合作用,利用端基金刚烷修饰的不同分子量的PEG来实现聚合物空心球的内、外表面的非共价修饰。该研究为聚合物空心球的表面修饰,尤其是其内表面的修饰,提供了一条简便易行的新途径,为其在诸多领域的应用研究提供了极大的方便。2.基于低分子量PEG/α-CD的有机及有机-无机杂化超分子凝胶的研究诸多文献研究表明,高分子量的PEG与α-环糊精在水溶液中可通过包结络合作用形成超分子凝胶。由于该凝胶具有温度响应的gel-sol转变形为和剪切变稀(shear-thinning)的性质,在药物的传输和释放领域具有非常好的应用前景,受到了研究工作者的广泛关注。但是具有更好生物相容性的低分子量PEG(Mn≤2K)与α-环糊精却只能形成晶体沉淀而非凝胶。我们的研究发现,单端金刚烷修饰的低分子量PEG(Mn=1.1或2K),由于金刚烷的疏水聚集作用,使其可以和α-环糊精形成超分子凝胶。同时,表面β-环糊精修饰的SiO2纳米粒子可以通过β-环糊精与金刚烷间的包结络合作用,很好地分散在上述超分子凝胶中,形成一种无机纳米粒子杂化的凝胶。且该β-环糊精修饰的SiO2纳米粒子的引入可以大大提高杂化凝胶的强度和粘度。进一步研究表明,金刚烷的疏水聚集区域和β-环糊精修饰的SiO2纳米粒子均可使PEG分子链的一端聚集在一起,起到了“超级交联剂”(Supra-cross-linker,简称为SCL)的作用。3.基于包结作用的以CdS量子点为超级交联剂的杂化超分子凝胶研究在上述超级交联剂的基础上,在这一部分我们利用主-客体分子间的超分子相互作用,以主体分子环糊精修饰的CdS为超级交联剂,为杂化超分子凝胶的制备提供了一条简单通用的新途径。利用这种超级交联剂,通过与各种功能性水溶性单体的共聚合反应,可以得到各种纳米结构的杂化超分子凝胶。在这种杂化超分子凝胶体系中,QDs通过其表面的环糊精与客体分子间的包结络合相互作用稳定均一地分散在凝胶中。所制杂化凝胶具有优良的透明性和均一性,使得其在各种光学器件和生物医用材料领域具有非常好的应用前景。4.基于包结络合作用的CdS量子点杂化水溶性超分子聚合物网络利用环糊精与金刚烷之间的主-客体包结络合作用,以CdS量子点为超级交联剂,构筑了一种新型的水溶性有机-无机杂化超分子三维网络结构。并利用TEM和AFM对这种杂化网络结构进行了表征。溶液中的荧光行为研究表明,所形成的超分子网络结构并没有破坏CdS量子点的表面结构,且可有效地增强其荧光强度。