点缺陷对γ-TiAl(100)表面氧原子吸附和扩散影响的第一性原理研究

来源 :首都师范大学 | 被引量 : 0次 | 上传用户:aminhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属以及金属间化合物的表面抗氧化问题影响着材料的实际应用和发展,其中,γ-TiAl合金的表面氧化问题一直是人们关注的焦点。本文的主要工作是利用基于密度泛函理论的第一性原理计算氧原子在γ-TiAl(100)表面附近的吸附和扩散,以及点缺陷对其影响。我们的计算结果表明:氧原子在干净γ-TiAl(100)表面上的最稳定吸附位置是对应第二层Al原子正上方由表面第一层2个Ti和2个Al原子构成的心位(H),表面下的最稳定吸附位置是对应表面第二层由4个Ti和1个Al原子构成的四棱锥中心位置(P)。氧原子在干净γ-TiAl(100)表面上的扩散能垒为0.62eV,氧原子从表面上向表面下第二层的扩散能垒为1.98eV,这说明氧原子在γ-TiAl(100)表面上的扩散更容易。而氧原子在γ-TiAl(100)表面从表面第二层扩散到表面第三层的扩散能垒为1.34eV,相当于氧原子在γ-TiAl体材料内部的扩散。在掺杂体系中,Si原子更容易替代表面第一层Al原子的位置,而w原子更容易替代表面第二层Ti原子的位置,且二者均使其近邻吸附氧原子的吸附能升高。由此表明Si原子更容易偏析在表面第一层上,而W原子更容易偏析在表面第二层上,且抑制了氧原子在γ-TiAl(100)表面附近的吸附。在空位缺陷体系中,更容易形成表面第一层Ti原子空位,且该空位缺陷使氧原子在其近邻位置的吸附能降低,可能促进氧化的进行。氧原子分别在干净表面、Ti空位表面、Si和W掺杂表面从表面上到表面下第二层扩散的能垒为1.98eV、1.34eV、2.53eV和2.69eV,由此表明,相对于干净表面,表面第一层Ti原子空位缺陷的形成使得氧原子在γ-TiAl(100)表面附近的扩散更加容易;而Si原子和W原子的掺入使得氧原子在γ-TiAl(100)表面附近的扩散更加困难。
其他文献
研究给定尺度上物种和种群的分布,确定限制这个物种分布的环境条件以及模拟物种分布区域,是实施生物多样性保护、领土政策规划以及评估当前全球变化影响的一个核心问题。本文
近年来人们发现,通过热极化技术可以使原本不具有二阶非线性效应的石英玻璃材料中产生可观的二阶非线性。这对于制造新型光纤及光纤型器件具有非常重要的意义。借鉴传统的双
针对全同玻色体系,本文提出了在O(2l+1)O(3)基底下O(2l+1)对称不可约表示构造的一种新递归方法.本方法通过群链U(2l+1)U(2l-1)U(2)来实现.首先,利用没有玻色子对的U(2l
HBT(Hanbury Brown and Twiss)干涉是量子精密测量中的一种重要手段,其通过测量光场的二阶关联特性从而得到待测结果。在HBT测距实验中,纠缠光子对在光纤中传输时会受到光纤
量子力学是现代物理学的重要基础,其中的量子信息学在量子力学的发展过程中有着极为重要的地位。量子测量作为量子信息学中一个重要应用,一方面不仅可以很好的应用于对未知物
学位
β-Ga2O3是III-VI族直接宽带隙半导体材料,其禁带宽度(Eg)在4.2-4.9eV之间,具有很好的光学和电学特性,日益成为当前氧化物半导体领域的研究热点之一。β-Ga2O3材料在日盲探测器
在过去十多年间,有关于高离化离子体系的理论计算和实验探究的课题一直深受学者青睐。目前,类锂体系高离化离子Kr33+的能级结构暂无实验数据,现有的理论数据又有限,所以需要
基于量子力学的基本原理,量子通讯具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。熵是信息科学中的重要研究工具,与此对应的量子熵是量子信息理论
与传统的光学全息相比,数字全息技术能够实现再现像的有效分离,并且能准确计算出再现波前的数值。针对数字全息技术的特点,本研究工作考察了数字相移全息技术中存在的振动干