【摘 要】
:
随着4G的全面普及和5G的加快部署,各种互联网新兴应用层出不穷。作为集中式无线接入网的核心部分,传统的移动前传面临着成本、传输速率和频谱利用率等方面的挑战。基于模拟光载无线的高效移动前传具有低成本、高传输速率和高频谱利用率等优势,已成为国内外专家学者的研究热点。为了便于高效移动前传中系统设备的控制和管理,以及与通用公共无线接口的背向兼容性,控制字与无线信号需要进行同步传输。当前,业界主要采用的基于
论文部分内容阅读
随着4G的全面普及和5G的加快部署,各种互联网新兴应用层出不穷。作为集中式无线接入网的核心部分,传统的移动前传面临着成本、传输速率和频谱利用率等方面的挑战。基于模拟光载无线的高效移动前传具有低成本、高传输速率和高频谱利用率等优势,已成为国内外专家学者的研究热点。为了便于高效移动前传中系统设备的控制和管理,以及与通用公共无线接口的背向兼容性,控制字与无线信号需要进行同步传输。当前,业界主要采用的基于FFT/IFFT的控制字与无线信号同步传输技术需要进行大量的FFT/IFFT运算,并且存在频谱泄露问题,具有较低的灵活性。此外,高效移动前传中控制字与无线信号的同步传输主要采用传统的IM-DD光链路。该链路需要使用额外的直流偏置和复杂的偏置点控制电路。随着小蜂窝基站的密集部署和远端射频单元数目的增加,传统的IM-DD光链路将不可避免地为高效移动前传网络带来较高的能耗,从而难以满足云无线接入网络架构对物理层绿色接入的要求。本文针对以上问题,进行了一系列深入研究,主要研究成果包括:1.针对当前高效移动前传中基于FFT/IFFT的控制字与无线信号同步传输技术存在的灵活性较差的问题,本文提出基于数字正交滤波的控制字与无线信号同步传输技术。该技术采用时域上采样、数字正交滤波和数字域加法来实现控制字数据与无线信号I/Q波形的聚合,同时可以根据高效移动前传的不同应用场景预先设计和优化数字正交滤波器参数,从而显著增强高效移动前传的灵活性。实验结果表明,24路带宽为20MHz的LTE信号和368.64Mbaud CPRI兼容的控制字符号经过6km标准单模光纤同步传输后,LTE信号的平均EVM和控制字符号的SNR可以分别达到<8%和>23d B。此外,在传统的IM-DD光链路中,基于数字正交滤波的控制字与无线信号同步传输技术可以获得~29d B光链路功率预算。2.针对当前高效移动前传中控制字与无线信号同步传输采用具有直流偏置和偏置点控制电路的IM-DD光链路所遇到的高能耗问题,本文提出采用无直流偏置的PM-DD光链路实现控制字与无线信号的同步传输技术。该技术使用马赫-曾德尔干涉仪将相位调制信号转化为强度调制信号,从而利用直接检测获取光载波的相位信息。理论推导和数值分析表明,与传统的IM-DD光链路相比,PM-DD光链路为高效移动前传中的射频信号传输提供了6d B功率增益。同时,大量数值仿真结果表明,PM-DD将高效移动前传中控制字与无线信号同步传输的光接收机灵敏度提高~3d B。
其他文献
随着科学技术的不断发展,人脸识别、虚拟现实以及增强现实等需要较高计算能力的新兴应用不断涌现,而移动终端有限的计算资源无法满足该类应用的运行需求。移动边缘计算(Mobile Edge Computing,MEC)和超密集网络(Ultra-Dense Network,UDN)的结合成为解决终端资源有限问题的有效方案。然而,在UDN-MEC系统中存在多种复杂因素,制约着用户的卸载决策,在动态系统中用户自
视频直播、短视频业务的蓬勃发展在丰富人们日常生活的同时,也导致了数据流量爆炸式增长。为了提升用户体验质量,边缘缓存技术将内容提前缓存在离用户较近的边缘节点中,降低用户请求响应时延。由于用户兴趣的时变性和视频内容的多样性,如何精确感知用户的兴趣变化和内容的流行趋势成为实现高效边缘缓存所面临的关键挑战。推荐系统技术能够基于海量数据分析用户个性化用户偏好,为用户提供“千人千面的”的个性化推荐服务。因此,
为解决南京椴种子萌发难的问题,本文研究不同赤霉素浓度、不同温度层积对其萌发特性的影响。结果表明,层积与赤霉素相结合是提高南京椴种子发芽率、促进幼苗发育的一种有效的方法,其中采用1 400 mg/L赤霉素浸泡24 h,经过4℃低温层积7 d,再转入10℃低温层积7 d,可显著提高南京椴种子发芽率,最高达73.68%;1200 mg/L赤霉素处理后经过变温层积和1 400 mg/L赤霉素处理后经过低温
近几年来,由于物联网等新兴技术的蓬勃发展,将会有更多的移动设备加入到无线网络中,构建智能美好生活是未来发展的大趋势。面对智能移动设备的爆炸式增长,使得频谱资源变得越来越稀缺,因此要求通信系统具备高传输速率以及高传输质量等特点。超宽带(Ultra Wideband,UWB)技术作为一种凭借极窄的脉冲来传输数据的技术,具有高带宽、多径分辨力强以及成本低等优点,主要用到室内短距离通信中,成为未来无线通信
日益增长的全球电动汽车(EV)市场对锂离子电池电极材料的成本和能量密度提出了更高的要求。在现有的正极材料中,高镍层状Li NixCoyMn1-x-yO2(NCM)和Li NixCoyAl1-x-yO2(NCA)因较高的理论比容量和满意的工作电压,被认为是最有前景的电动汽车正极材料之一。然而,由于钴(Co)资源匮乏及价格昂贵,对电池行业所追求的低成本和可持续的目标构成了重大挑战,于是低钴或无钴化成为
大数据时代,视频数据量在不断增加,视频编码技术也在不断发展。实际应用中H.264和高效视频编码(High efficiency video coding,HEVC)标准共同存在,通用视频编码(Versatile Video Coding,VVC)标准也逐渐登上历史舞台。由于不同编码标准的编码器在以后很长一段时间都会共存,这使得视频转码技术的研究十分具有意义。现存的视频转码算法常存在编码复杂度高和压
人脸表情识别作为情感研究的重要组成部分,是实现人与机器交互的必要条件,具有重要的研究意义及潜在的商业价值。本论文就人脸表情识别过程中两个重要环节进行了分析,分析了现有的人脸表情特征提取算法以及人脸表情分类识别方法中存在的不完善的地方,并且提出了解决方案。本文研究的主要内容有:1.针对局部梯度二值模式(Local Gradient Binary Pattern,LGBP)只能在单尺度模板下提取人脸表
通信信号调制类型识别是一种典型的模式识别问题,被广泛应用于信号确认、无线电侦听、电子对抗、信号监测和分析等领域。在通信环境日益密集,信号调制类型日益丰富的情况下,信号的调制识别变得愈加困难。近年来,随着机器学习的快速发展,深度学习算法在模式识别领域得到广泛应用,并逐渐用于解决信号调制识别问题。本文主要研究基于深度学习的信号调制识别算法,主要内容如下:1.针对现有方案在低信噪比环境下识别准确率较低的
随着科技的发展,各行各业对钢材的需求量不仅越来越大,而且对质量的要求也是越来越高。精确测量钢水的温度可以提高钢铸工件的合格率,降低燃料成本,是推动钢铁自动化生产必不可缺的一步。目前通常采用红外测温技术全面监测冶炼炉中的钢水温度。但由于生产现场环境复杂,工作过程中受到环境温湿度、测温距离、发射率和粉尘等多种因素的影响,限制了测温精度。因此,本文将针对主要的影响因素,提出有效的温度补偿方法,以提高红外