论文部分内容阅读
本文针对粉煤密相气力输送技术,综合应用统计分析、信号处理和数学建模等多门学科知识,对复杂的气力输送过程中水分赋存形态、载气对粉体流动性的影响、竖直上升管内输送流型预测与划分、典型流型的信号特征及流型的多尺度气固流体动力学特征进行了深入的理论和应用研究。1.从颗粒尺度探究了水分赋存形态及其作用机制,进一步发展了粉体流动性判据,揭示了水分含量及其赋存形态对褐煤颗粒流动性的影响机制;基于颗粒间相互作用力分析,研究了 N2和CO2对粉体流动性的影响,揭示了载气对易吸附性和不易吸附性粉体的A/C类粉体流动性的作用。2.由经典的Zenz气固输送相图出发,结合机器学习方法,根据竖直上升管内粉煤密相气力输送过程中表观气速、单位管压降和输送固气比的关系,提出了一种高精度(95.2%)的流型识别模型。讨论了不同聚类算法和模型验证方法在处理粉煤输送系统信号中的优劣性,给出了该系统的最优聚类算法和验证方法。3.针对于上述机器学习模型预测失败的栓塞流流型进行深入的探究,结合管道电容层析成像技术,获得了栓塞流流型变化过程,即堆积床层流→环核流→纯气相流→环核流→堆积床层流的流型演变现象。试验还发现了不同的栓塞流流型都存在五种速度分布。根据栓塞流的波动特征和系统的操作参数特性,提出了栓塞流相图的概念并成功预测了试验中出现的五种不同栓塞类型。在此基础上,进一步从管道内固相床层应力分析出发,揭示了动态栓塞流的静力学特征,给出了栓塞流演变的根本原因。4.统计分析了试验系统中的四种典型流型(堆积床层流、栓塞流、环核流和低浓度流)的压力信号、固相速度信号和截面浓度信号的时间序列与截面分布特征。采用小波分析获得典型流型的颗粒能谱特征及其主尺度。通过提取主尺度参数从而获得了典型流型的相干结构特征,揭示了典型流型的流体动力学机制。结合小波分析和去趋势涨落分析方法,提出了一种浓度时间序列的预测方法。5.基于小波分析和分形分析,提出了粉煤密相气力输送典型流型信号的多尺度分解与耦合方法。在频域上,根据输送信号的分形特征,分解成微观、介观和宏观尺度。深入分析多尺度气固作用的构效关系,提出了气固相互作用(气相主体湍动作用、颗粒-壁面摩擦作用和颗粒-颗粒碰撞作用)的多尺度作用模型。通过试验测得了对应的气固相互作用信号值。根据气固相互作用多尺度作用模型,揭示了典型流型的多尺度作用机制和主导的气固相互作用。