【摘 要】
:
霍尔推力器是一种等离子体推进装置,广泛应用于卫星位保和深空探测。耦合区是连接推力器加速腔和空心阴极之间的物理分区,负责向加速腔和离子束流注入电子,对推力器效率、点火可靠性、放电模式和关键零部件寿命有较大影响。然而,由于一些观念误区,关于耦合区的研究很少,目前物理过程不清楚,制约着进一步的理论与应用研究。另一方面,耦合区自身具备一定特殊性,与加速腔或空心阴极的有区别,也需要重新理顺工作原理、物理效应
论文部分内容阅读
霍尔推力器是一种等离子体推进装置,广泛应用于卫星位保和深空探测。耦合区是连接推力器加速腔和空心阴极之间的物理分区,负责向加速腔和离子束流注入电子,对推力器效率、点火可靠性、放电模式和关键零部件寿命有较大影响。然而,由于一些观念误区,关于耦合区的研究很少,目前物理过程不清楚,制约着进一步的理论与应用研究。另一方面,耦合区自身具备一定特殊性,与加速腔或空心阴极的有区别,也需要重新理顺工作原理、物理效应和主要矛盾。鉴于此,本文将耦合区按照空间划分为不同子分区,并研究了子分区的主要物理过程:阴极电子引出过程、电子在外磁场中与离子束流的中和过程以及离子束流的发散过程。电子引出过程中,本文发现阴极出口的大幅值放电振荡,源于一种独特的不稳定机制。该振荡的触发条件是引出电子束在触持极上有损失,在电源反馈下形成了电离振荡(“劫流激振”);又由于阴极出口固有的类似正鞘的参数分布,这些电离振荡很容易发展成不稳定性(双元电离不稳定性)。这种不稳定机制会使引出压降升高、功率波动增大、离子腐蚀加快。利用平行磁场使电子束直径小于触持极孔径可以避免触发劫流激振,从而改进后续一系列放电特性(出口电流振幅减小~50%,引出压降减小~30%)。这就为阴极在推力器磁场中如何选择安装位置提供了参考。电子与离子束流中和过程中,本文发现耦合压降的成因是离子束流和阴极原初电子之间的电荷分离。阴极出口的磁感线捕获的高密度原初电子(“虚阴极”)是重要的等离子体结构,其位置决定了电子流动路径,以及横越磁感线传导的距离。结合磁偶极子场分布,本文以广义欧姆定律形式推导了虚阴极电子到达离子束流所需要的压降(输运压降),分析了输运压降的优化策略,并给出了根据输运压值确定阴极位置的方法,实验中实现了输运压降减小~40%。引出压降与输运压降之和即为耦合压降,而耦合压降会明显影响推力器电压利用率,这就解释了推力器效率受阴极位置和角度影响的原因。离子束流发散过程中,本文发现耦合区内存在偏转电场,使喷出的离子束流发散,因此羽流发散本质上是“场致发散”占主导,而以往所关注的热扩散的贡献要小一个数量级。通过调整阴极位置、减小耦合压降,实验中在0.55m的长度上实现了羽流发散半角减小~36%至18.6°。场致发散还会在某种微观过程(例如离子飞行时间不稳定性)的辅助作用下产生朝向推力器侧翼的反常高能量离子射流,将阴极触持极的腐蚀速率加速至2.5~6.7倍。因此,阴极安装位置会影响推力器寿命,阴极单独寿命考核也需要考虑耦合加速腐蚀的影响,本文给出了单独考核时长的计算方法。由于推力器效率和阴极寿命在某些情况下不能兼顾,本文还提出了一种基于带有外部电子发射的阴极设计(“再生补偿”)。其出发点主要是通过抑制劫流激振,解除阴极与磁场的依赖关系,从而使阴极有更多位置选择。结果显示,再生补偿阴极的电离型振荡振幅降低55%,离子能量降低40%~50%,同时阴极的自持下界也从1.3A拓宽了一个数量级至0.2A,可以在不增加阴极流量、不施加触持极电流的情况下直接与小功率霍尔推力器耦合。但是这种阴极的引出压降却并未如预期那样降低,原因在于羽流中出现了电势非连续分布的“台阶区”。台阶区的统计特征显示其与双流不稳定性关系密切,很难避免,因此再生补偿的适用性应辩证评估。虽然本文研究的是物理过程,但捕捉到的关键物理效应还是衍生出了一系列涉及关键尺寸和试验设计的准则。此外,本文所提出的物理模型本身可扩展性良好,可以作为进一步研究多尺度效应、放电一致性等问题的参考。
其他文献
推行数字人民币是我国释放数字经济活力和助力数字中国建设的内在要求和有力支撑。随着数字人民币试点地区的有序扩容和试点场景的深化拓展,数字人民币研发进展显著,但在技术应用、安全保障、跨境支付、法律监管和金融稳定等方面还面临一些挑战。面对数字货币时代的加速到来,应不断优化数字人民币发展路径:以技术应用创新升级,提升数字人民币普惠性和扩大试点场景覆盖;以安全体系设计优化和安全教育普及,维护数字人民币发行流
近年来,江西省安远县财政局延伸财政支出绩效管理职能,围绕提速增效、规避廉政风险这个目标,将政府投资项目的工程预算、工程结算和竣工财务决算三个环节实行"链条式"无缝审核,确保财政资金规范安全使用,力促清廉财政的建立。一是精简审核流程,提高审核时效。充分发挥财政投资评审在预算管理的定量基础和技术支撑作用,
小行星探测聚焦宇宙生命起源等重大科学问题,一直是深空探测的重点和热点。开展小行星探测,对于探索生命起源、研究太阳系起源和演化、保护地球安全具有重要意义。小行星数量众多,具有弱引力、形状不规则、动力学环境复杂等特征,给小行星探测器的轨道设计优化与自主导航系统设计带来了新的技术挑战。本文以我国未来的小行星探测任务为背景,针对双小行星探测中的特殊问题,开展小推力轨道优化与自主导航关键技术研究。根据动力学
为了探索QCD相图在较高重子化学势下的结构,RHIC(Relativistic Heavy Ion Collider)开始了束流能量扫描实验BES(Beam Energy Scan)。第一期束流能量扫描实验(BES-I)观测到了粒子与反粒子椭圆流劈裂的程度随碰撞能量的降低而增大的现象,说明作为产生QGP重要证据的椭圆流的组分夸克数标度在束流扫描能区较低能量下不再成立,同时平均横动量相对动力学涨落的
蓝宝石在很多高技术领域中都有广泛的应用前景。采用蓝宝石制造大尺寸、复杂结构构件,其连接技术是产品制造的关键技术之一。目前,用于连接蓝宝石的主要方法一般都需要高温环境,导致热应力问题。如果能够在较低温度下实现蓝宝石的界面结合,无疑将大大简化蓝宝石焊接的工艺流程,提高效率,降低成本,并且有利于缓解焊接接头的应力问题。目前已有研究表明在蓝宝石与Al的界面反应外延可能在较低温度下形成牢固界面结合。但是使用
鉴于空间光通信中大气湍流造成的光斑漂移和光场畸变,本文用光子流模型描述CMOS上的光场分布与变化,来预测光斑质心的位置;用流体屏模型描述大气湍流造成的起伏效应,从而分析与预测光场分布。在理论上,大气湍流中光斑形状与光场分布的复杂性源于湍流介质的复杂性。依靠光子流模型与深度学习,光斑质心的预测可以充分利用湍流中光场的时间相关性。流体屏模型的建立,使得大气信道这一典型的开放式随机系统被压缩至半封闭的二
阵列信号处理是现代信号处理重要的组成部分之一,在雷达、无线通信和声呐等领域具有广泛而重要的应用。其中包括阵列误差校准、阵列优化、空间谱估计,即波达方向(Direction of Arrival,DOA)估计等技术。但目前大部分的阵列信号处理技术都是在均匀阵列的基础上提出的。为了提高阵列的性能,目前最常用的做法是增加阵元数目,但该做法对整个天线系统的硬件复杂度和成本有较高的要求,同时也会增加信号处理
电气变速器(Electric Variable Transmission,EVT)是一种双转子复合电机,当其作为机电能量转换装置应用于混合动力汽车上时,可以相当于行星齿轮加一个发电机和一个电动机,实现混联式混合动力的全部功能,系统得到极大简化。基于EVT的混合动力系统,涉及发动机、储能源和两个电机等多个部件,电机和储能源的参数设计与系统控制性能相互耦合影响;目前EVT混合动力总成的设计与能量管理主
三次采油驱油技术的发展关系到我国油田稳产增产,也是涉及国家能源战略、能源安全的重要课题。聚合物驱油分层配注是目前最适用于我国陆相非均质油藏的开采技术,通过大幅提高配注液粘度来降低水油流度比的方式扩大驱替相波及范围,从而提高油田采收率。但是开采过程中驱油聚合物的粘度损失特别是由机械剪切降解导致的配注液粘度损失是导致驱替效率无法达到预期的关键问题。现有的解决手段是增加聚合物干粉用量和研制耐温耐盐抗剪切