论文部分内容阅读
由于能源危机和环境问题的影响,电动汽车受到广泛地关注,永磁同步电机(permanentmagnetsynchronousmotors,PMSM)驱动是电动汽车驱动系统的主流技术。本文针对PMSM驱动系统在纯电动汽车应用中出现的转矩动态响应性能不佳、调速性能不理想以及低速转矩脉动等问题,进行了深入地研究,主要研究成果总结如下:
在同步旋转坐标系中d-q轴电流存在耦合,严重影响转矩动态响应性能。针对现有解耦控制策略存在的电流调节器动态性能设计难度大、鲁棒性较差等问题,提出一种基于内模的滑模电流解耦控制(slidingmodecontrolbasedoninternalmodel,IM-SMC)策略。该策略采用内模控制(internalmodelcontrol,IMC)简化了电流调节器设计,采用滑模控制(slidingmodecontrol,SMC)实现了电流交叉解耦且提高了系统全工作范围内对参数摄动和外扰动的鲁棒性。仿真和实验结果表明该策略能有效实现d-q轴电流解耦,提高系统动态性能,同时具有优良的鲁棒性。
通过分析d-q轴电流调节器对弱磁动态性能的影响,在基于电压反馈的弱磁策略基础上引入q轴电流误差补偿器,提出一种基于反馈电压和电流作用的弱磁控制策略。该策略可有效地抑制q轴电流调节器的不利影响,同时具有抗积分饱和及弱磁双重功能。为提高系统性能,使用IM-SMC策略替代该策略中的电压前馈解耦策略。实验结果表明该策略改善了系统在电动工况下的弱磁动态性能。
电压源逆变器(voltagesourceinverter,VSI)死区效应是导致PMSM低速转矩脉动的主要原因之一,在分析死区效应和零电流钳位效应的基础上,提出一种无需电流极性检测的自适应死区时间补偿策略。该策略使用扰动观测器获得死区补偿时间;在传统SVPWM基础上,根据两个非零空间电压矢量作用时间之比分配每个电压矢量所需补偿时间。实验结果表明该策略有效降低了电流谐波,抑制了零电流钳位效应,能抑制转矩脉动。
对于传统PI速度控制系统,由于积分饱和原因导致系统响应快速性和零超调之间的矛盾。为解决该问题,研究PI控制和PD控制,提出一种具有预测功能的抗积分饱和PI速度控制策略。该策略利用PD预测功能,根据其输出值的符号控制PI控制器的积分方向。实验结果表明该策略具有优良的动态性能,能缩短AMT换挡时间、减小同步器滑磨功。
AMT换挡前后电机转矩卸载/加载时间和车辆纵向冲击度之间存在矛盾。为解决该问题,提出一种转矩指令最优控制律用于抑制AMT换挡前后转矩突变导致的冲击,该控制律与整车等效到电机侧的总的转动惯量、车轮半径、变速器传动比以及设计的冲击度相关,仿真和实验验证了该方案的可行性。