【摘 要】
:
利用太阳能、风能等可再生能源发电,通过电能分解水制氢是实现绿色氢能的重要途径。阳极析氧反应(oxygen evolution reaction,OER)作为电解水制氢过程中动力学阻力最大的部分,是整个电解水制氢过程中动力学阻力最大的部分,因此发展高效的析氧反应催化剂至关重要。钴基材料是用于析氧反应的一种重要催化剂,具有储量丰富、价格便宜并且环境友好等优点。本文调控制备了不同形貌的氧化钴催化剂,暴露
【基金项目】
:
天津市重点研发项目(18ZXJMTG00180); 天津市重点研发项目(19ZXNCGX00030);
论文部分内容阅读
利用太阳能、风能等可再生能源发电,通过电能分解水制氢是实现绿色氢能的重要途径。阳极析氧反应(oxygen evolution reaction,OER)作为电解水制氢过程中动力学阻力最大的部分,是整个电解水制氢过程中动力学阻力最大的部分,因此发展高效的析氧反应催化剂至关重要。钴基材料是用于析氧反应的一种重要催化剂,具有储量丰富、价格便宜并且环境友好等优点。本文调控制备了不同形貌的氧化钴催化剂,暴露出不同晶面,进行了详细的析氧催化性能研究,并选取立方体和纳米球形颗粒形貌的氧化钴进一步掺杂改性优化,以提高对OER反应活性。本文首先利用水热合成法,在不同温度与时间下制备了具有纳米球形、立方体、截角立方体,以及片状等不同形貌的氧化钴催化剂,通过物理表征可知催化剂表面呈现了(100)、(111)、(110)等优势晶面。结合催化剂的活性评价和DFT计算,比表面积较大的纳米球形颗粒氧化钴表观活性最好,当电流密度为10m Acm-2时,电极电势为1.725 V,而具有(100)晶面的立方体氧化钴催化剂本征活性最好,是纳米颗粒的7.5倍。接下来选取了可形成氧空位的Ce元素对本征活性及表观活性最高的两种形貌的氧化钴进行掺杂改性优化。实验结果表明,当Ce和Co的摩尔比为1:30时,纳米球形颗粒的表观活性最佳,当电流密度为10 m A cm-2时,电极电势为1.65V。这可能是由于少量的Ce掺杂为钴基催化剂表面带来了丰富的氧空位,调控了表面钴原子的电子结构,从而改善了催化活性。但由于掺杂Ce元素的立方体氧化钴颗粒较大,进一步选用同族Fe原子进行掺杂,Fe原子成功进入了氧化钴晶格中,同时可以降低立方体颗粒粒径,提高催化剂比表面积,对活性也有大幅度的提高作用。
其他文献
水声信道的多径时延扩展较大且具有明显的稀疏特性,多径时延扩展会引起码间干扰,导致不同程度的信号衰落和畸变。因此,研究如何减小甚至消除水声信道中多径效应的影响具有重要意义。基于训练序列的均衡方法可以克服码间干扰,但传统方案中信息数据与训练序列分开传输,降低了信息传输的速率。而基于叠加训练序列的均衡方法将训练序列叠加于信息序列上,训练序列不会占用单独的带宽,可以有效解决上述问题。因此,本文研究基于叠加
飞机以及火箭的表面蒙皮可以简化成壁板结构。壁板处在超音速气流中可能因风速过高而出现颤振。颤振会给壁板带来疲劳损伤以及裂纹等问题,进而给飞行器留下很大的安全隐患。石墨烯增强功能梯度材料由于其出色的光学、热学以及机械性能,在航空航天领域有着非常高的应用前景。目前石墨烯增强功能梯度壁板的颤振机理还不明确,对其展开颤振以及热颤振特性研究有着很高的工程应用价值。本文考虑了超音速气流的影响,分别研究了石墨烯增
滑模变结构控制在理想情况下对满足匹配条件的不确定性和外界干扰具有完全鲁棒性,然而实际开关控制存在空间滞后和时间延迟等问题,导致滑动模态无法很好地收敛于滑模面,进而引起了系统抖振。本文针对幂次趋近律的收敛速度问题对滑模控制的趋近律进行了研究,并应用在基于滑模控制的轮式移动机器人上,然后研究了轮式移动机器人滑模控制的奇异性和快速性问题,主要工作如下:(1)针对传统趋近律存在的抖振现象,以及全局收敛速度
液滴撞击液面是自然界和工业领域常见的现象,广泛存在于喷墨打印、喷淋冷却(如油池、壁面等)、燃油喷射、农业灌溉以及消防灭火等多种场景。深入理解该现象的特征及相关机理有重要的应用价值和学术意义。本文采用实验和理论分析相结合的方法,用高速摄像机记录了不同直径的液滴以不同速度撞击不同深度液面的运动过程,基于实验现象和实验数据,重点研究了韦伯数We、弗劳德数Fr、液滴直径d和液池深度h0对液滴撞击液面后运动
研究目的:探讨两不同足底筋膜贴扎方式对超重人群在DJ运动中下肢(髋、膝、踝)三关节的生物力学影响。包括运动学、动力学、刚度等指标,依据生物力学数据判断不同足底筋膜贴扎方式是否对超重人群在DJ动作中产生影响,探究其下肢力学规律及其内在联系。研究方法:采用Vicon三维光学运动捕捉系统(200Hz)、Kistler三维测力台(1k Hz)同步对武汉体育学院20名超重男大学生进行两种不同的足底筋膜贴扎方
随着对机械振动控制精度要求的逐渐提升,基于新型智能材料对机械结构振动进行控制受到了越来越多的关注。压电材料是目前应用最为广泛的智能材料之一,可以根据外部电场的变化从而产生应变,这一特性被广泛的应用到了振动主动控制中。形状记忆合金材料也是一种应用较为广泛的智能材料,其有着较大的滞后阻尼特性,因此被广泛应用到了振动的被动控制中。我们将压电材料和形状记忆合金材料的优点结合起来,提出了一种新的压电-记忆合
<正>12月30日,中国石化发布2022年十大油气勘探成果。一年来,中国石化持续加大油气勘探力度,喜获十大油气勘探发现成果,全年新增石油探明储量2.02亿吨、天然气探明储量2786亿立方米,超额完成七年行动计划年度目标任务,展现了保障国家能源安全新作为。成果一:塔里木盆地顺北油气田新区带油气勘探取得重大突破成果二:渤海湾盆地胜利济阳页岩油国家级示范区勘探取得重大突破成果三:苏北盆地页岩油新区新层系
本文以非牛顿流体混合釜为研究对象,首先利用计算流体力学方法对锚式搅拌桨的流场进行数值模拟,研究了在逐渐放大过程中搅拌釜内流型的转变、速度分布以及搅拌功率,探讨了使用恒定尖端速度作为放大准则的适用性和局限性;然后,针对该混合釜底部的高剪切混合器,本文创新性地采用基于Image J的图像分析技术研究了高剪切混合器中CMC的团聚现象,并对此类高剪切混合器的放大设计提出了放大准则。具体的研究工作如下:基于
水精馏已被证明是从核电站排水中回收氚的有效方法,其具有设计和操作简单,可靠性高,无爆炸性、腐蚀性和有毒物质,并且不需要同位素交换催化剂等优点。水精馏过程的分离效率主要取决于塔内填料的传质性能,除了填料的几何结构和材质外,表面润湿性也显著影响着填料的传质性能。水的表面张力较大,其在目前大部分商用填料表面的润湿性较差,塔内填料难以被完全润湿,不能很好地形成液膜,造成气液相界面密度过低,从而使分离效率受
能量回收装置是促进反渗透海水淡化技术发展应用的关键装备。我国海水淡化工程对国外能量回收装置产品依赖度极高,亟需开发新型国产化能量回收装置以摆脱外国产品和专利技术的约束。本文介绍的一种新型的转盘式能量回收装置,采用转盘和滑阀协调响应的工作模式实现压力能的连续回收。滑阀的工作特性直接关系到装置未来运行的可靠性和稳定性,是本文研究的内容。论文建立了转盘式能量回收装置中滑阀的理论力学模型,对滑阀的受力、强