论文部分内容阅读
阿基米德铺砌是指每个铺砌元都是正多边形,且每个铺砌顶点的顶点特征都相同的边对边铺砌,其有且仅有11种,按照顶点特征分别记为:(44),(36),(63),(34.6),(3.6.3.6),(33.42),(32.4.3.4),(3.122),(4.82),(3.4.6.4)和(4.6.12).显然,如果分别取铺砌(44),(36),(63)的顶点为顶点,铺砌边为边则得到众所周知的格图,三角形格图以及正六边形格图,其诸多性质已经得到了广泛的研究. 本文主要研究其余8种阿基米德铺砌图的相关性质,包括填装着色问题,定位配对控制集问题,以及有限子图的Gallai性质. 第二章研究了阿基米德铺砌图的填装着色数,证明了铺砌图(34.6),(33.42),(3.6.3.6)的填装着色数为无穷,铺砌图(4.82)和(4.6.12)的填装着色数均为7,铺砌图(4.6.12)的填装着色数在7与11之间. 第三章研究了阿基米德铺砌图的最优定位配对控制集问题,刻画了铺砌图(4.82)和(3.6.3.6)具有最小密度的定位配对控制集,并给出了(4.6.12),(3.122),(33.42),(32.4.3.4)和(34.6)等5种阿基米德铺砌图的最优定位配对控制集密度的上下界. 第四章研究了阿基米德铺砌图有限子图的Gallai性质,通过具体构造的方法证明了在阿基米德铺砌图(34.6),(33.42),(32.4.3.4),(3.6.3.6),(3.4.6.4),(4.82),(4.6.12),(3.122)中分别存在62个顶点,46个顶点,48个顶点,92个顶点,100个顶点,166个顶点,207个顶点,191个顶点的连通子图满足Gallai性质;分别存在152个顶点,110个顶点,110个顶点,278个顶点,224个顶点,511个顶点,541个顶点,499个顶点的2-连通子图满足Gallai性质.