论文部分内容阅读
火灾科学作为一门新兴的学科受到了世界各国的极大关注和广泛研究,特别是火灾研究中的湍流问题一直是困扰火灾科学研究的难题。湍流火焰的火焰结构以及蔓延机理一直是各国学者研究的重点。本文通过对湍流火焰前锋结构分析,发现随着管径减小,预热区与反应区的厚度均增大,且火焰位移速度增加。通过对时间步长与空间步长的分析发现,最适时间步长=网格尺寸/特征速度。计算网格尺寸越小,计算所得火焰面褶皱程度越强,火焰前锋厚度越小,位移速度越大。当数值模拟采用的时间步长未达到最适时间步长时,减小时间步长与减小计算网格尺寸对数值计算结果的影响相同。通过对自适应网格计算结果的分析发现,自适应网格能够减小火焰面处网格尺寸,随着网格尺寸的减小,计算所得的火焰位移速度增加,火焰面厚度变薄,温度梯度增加,计算结果更接近真实火焰蔓延结果。数值模拟过程采用自适应网格可以节省计算机资源,提高计算效率。通过对箱体内的燃烧实验结果分析发现,窗口开度越小,最佳浓度位置越接近箱体顶部,初始燃烧涡团越靠近箱体顶部,箱体内燃烧持续时间越长。燃气发生泄露后,燃烧均经历点火期、发展期、剧烈燃烧、燃烧减弱、回燃、熄火六个阶段。随着燃气泄露速度的增大,箱体内的燃气总量增加,气流扰动加强,燃烧剧烈程度加大,火焰回燃现象越明显。通过对箱体内燃气泄露并引发火灾的数值模拟分析发现,箱体内数值模拟过程计算时间步长采用1ms进行数值计算最合适。分析发现:箱体窗口开度、箱体空间大小与燃气泄露速度对火焰面形状没有影响;燃烧涡团左侧火焰锋面厚度要大于右侧火焰锋面厚度;箱体窗口开度越小,火焰蔓延速度越大;燃气泄露速度越小,泄露时间越长,箱体内燃料混合越均匀,火焰蔓延速度越快。