论文部分内容阅读
耳蜗是听觉系统的外周感受器,其功能的实现有赖于基底膜的振动、内淋巴液流动等生理过程。由于耳蜗深埋于颞骨骨质中,其结构细微且复杂,使得这些生理过程难以观察并记录。多年来,人们对耳蜗及其毗邻的空间结构的生物力学研究主要是通过大量动物和人体试验进行定量分析,因此对耳蜗的了解和认识还不够全面。因缺少精确量化的分析模型,限制了耳蜗相关疾病病因、发病机制、诊断、治疗方法及其与环境复杂的交互关系的研究。运用实验模型与有限元法相结合的框架所建立的生物力学模型,弥补了此缺陷。重建的三维图像不仅能再现组织器官的整体空间形态,还可以在此基础上测量耳蜗相关解剖结构的数据,为手术的定位提供理论依据,还能定量分析耳蜗的生理功能。现阶段建立模型的研究数据大部分是参考相关文献得到的,其模型的精确性可能会受到影响。而在国内基于自行采集获取耳蜗宏细观解剖结构的数字信息进行三维重建,继而建立三维生物数值模型十分少见,因此直接影响了该领域原创科研成果的提出。本实验根据豚鼠耳蜗的冰冻连续切片获取了耳蜗的一些原始相关数据并行数字化,建立了豚鼠耳蜗三维生物数值模型,并对其基底膜的数值模拟结果进行了探讨。目的:1.通过不同的连续切片法建立的耳蜗模型,探讨适合耳蜗三维重建的方法。2.根据采集得到的耳蜗宏细观解剖结构的数字信息,以获得豚鼠耳蜗的生物三维数值模型。本文着重获取部分耳蜗基底膜的原始数据。3.通过对耳蜗基底膜进行模态及谐响应分析,探讨耳蜗基底膜的动力学特性及结构特征。4.通过建立不同基底膜模型,探讨基底膜模型的几何尺寸和固有频率之间的关系。方法:1.取豚鼠内耳行冰冻连续切片并染色、封片。2.对切片摄像并获取豚鼠内耳切片的图像信息。3.经Photoshop处理后,用MATLAB获得边界的三维坐标点。4.通过ANSYS得到耳蜗膜迷路的三维模型和基底膜的数值模型。5.对基底膜进行模态和谐响应分析。6.建立几种不同参数的基底膜模型,求解基底膜的固有频率并进行比较。结果:1.通过组织冰冻连续切片及摄像,获得了较完整的豚鼠耳蜗组织连续切片及其放大后的图像信息。2.通过组织切片获得的耳蜗宏细观解剖结构的数字信息,利用ANSYS软件,构建了豚鼠耳蜗膜迷路三维几何模型。3.根据所建的耳蜗三维几何模型,获得了部分基底膜的原始数据:其平均值为基底膜靠近耳蜗底部长度为0.05mm,基底膜靠近耳蜗顶部长度0.25mm,基底膜靠近蜗轴侧长度为1.2187cm,基底膜远离蜗轴侧长度为1.4969cm。4.该模型对豚鼠基底膜进行了模态和谐响应分析,得到基底膜前十阶的固有频率数据:3189.9Hz—5897.9Hz。5.基底膜的固有频率与基底膜螺旋曲面的扭曲程度、基底膜的厚度及蜗顶到蜗底渐变厚度的比值呈正相关。结论:1.基于冰冻连续切片结合计算机技术进行内耳宏细观结构的三维重建是一种值得深入探讨的方法。2.运用实验模型与有限元法相结合所建立的生物力学模型对基底膜的动力学特性进行了数值模拟及分析,并把得到的结果与相关文献的数据进行比较,证明了该模型耳蜗感音与基底膜数值模拟的可行性。3.在数值模拟过程中,发现基底膜的形状、厚度及厚度比值对基底膜的固有频率值分析十分敏感。其数值模拟结果与基底膜螺旋曲面的扭曲程度、基底膜的厚度及蜗顶到蜗底渐变厚度的比值呈正相关。且为进一步建立耳蜗生物数值模型的精细化提供依据。