【摘 要】
:
为了实现汽车轻量化,越来越多的轻质合金被运用到车身上是必然的趋势,因此轻质合金与钢的连接成为研究重点。本文采用AZ31B镁合金和DP590镀锌双相钢为母材,选用光纤激光器来探究中间层,激光参数和磁场对镁合金/钢激光焊接的工艺和机理。采用钢上镁下的搭接形式,研究了纯Cu粉末和不同质量比的Cu-Si复合粉末对镁合金/钢激光深熔焊的影响。试验结果表明:在激光功率为800W,中间层的加入,提高焊接过程的稳
论文部分内容阅读
为了实现汽车轻量化,越来越多的轻质合金被运用到车身上是必然的趋势,因此轻质合金与钢的连接成为研究重点。本文采用AZ31B镁合金和DP590镀锌双相钢为母材,选用光纤激光器来探究中间层,激光参数和磁场对镁合金/钢激光焊接的工艺和机理。采用钢上镁下的搭接形式,研究了纯Cu粉末和不同质量比的Cu-Si复合粉末对镁合金/钢激光深熔焊的影响。试验结果表明:在激光功率为800W,中间层的加入,提高焊接过程的稳定性,得到了连续均匀美观,表面泛银白色金属光泽,无飞溅和凹坑等缺陷的焊缝。Cu元素的加入提高了熔池的稳定性,促进Fe-Al反应层在Mg/Fe界面处连续稳定地生成,并抑制了镀锌钢表面的Zn残留在焊缝Mg/Fe界面处,提高了焊接接头的抗拉剪力。Si元素的加入使Fe-Al反应层的Fe-Al相转变为Fe-Si-Al相,进一步提高了接头的力学性能,当Si元素占比5%时,接头抗拉剪力达到最大81.9N/mm,相比镁合金/钢直接焊接提升30%。在确定Cu-Si复合粉末为Cu-5%Si,厚度为130μm后,进一步探究了激光功率、焊接速度和离焦量三个工艺参数对镁合金/钢激光焊接的影响。结果表明,在合适的工艺参数下,得到焊缝连续美观,成形良好,当热输入过低时,焊缝正面出现凹坑等缺陷;热输入过高时,焊缝背面正面出现焊瘤等缺陷,焊缝背面被焊穿。热输入较低时,镁侧焊缝分布的Cu-Mg IMCs密度变大,随着热输入的增加而稀疏;此外,离焦量影响了Mg/Fe界面处的反应层的厚度,当离焦量为-1mm时,反应层最厚,随着离焦量向0mm及正离焦增加时,反应层厚度逐渐降低。在激光功率800W、焊接速度0.05m/s、离焦量0mm时,接头抗拉剪力达到最大81.9N/mm。磁场辅助焊接时,采用镁上钢下的搭接形式,并重新优化工艺参数为激光功率为600W、焊接速度为0.07m/s、离焦量为0mm、磁场外接电流为5A,电压为3V。结果表明,磁场辅助焊接能够增加焊缝对激光能量的吸收,使镁侧焊缝内部组织更加均匀,且促进了焊缝内部Mg/Fe界面处生成了反应层,同时提升了接头的力学性能,其接头抗拉剪力达到96.5N/mm,相比不增加磁场提升13%,其断裂发生在母材处。
其他文献
汽车行业对轻量化,环保化的需求越来越高,特别是新能源汽车的发展,使得汽车行业对车用结构材料的关注日益提升。但由于镁合金的耐腐蚀性能差,这大大限制了它在工业领域上的大规模应用。近年来,向Mg-Zn合金中加入稀土元素得到的Mg-Zn-RE合金引起了研究者的极大兴趣。其中轻稀土元素La和Ce加到Mg-Zn合金中,会形成多种金属间化合物。本文通过向Mg-4Zn合金中添加轻稀土La和Ce,通过微观结构表征和
钛及钛合金是一种轻质、比强度高和耐腐蚀性好的结构金属,因其综合性能优异,开发潜力巨大,被广泛应用于众多关系国家经济命脉的工业制造领域。然而,由于其硬度低、表面摩擦系数高、耐磨性较差等不可避免的问题,使得钛及钛合金的进一步应用受到了一定制约。通过表面改性处理既可以保留钛及钛合金的性能优势又能以较低成本提升其表面性能,已经成为钛合金应用领域的研究热点之一。采用激光技术对钛合金进行表面改性时常用粉末预置
摩擦热渐进成形是一种渐进成形局部加热方式,具有简化成形设备以及为成形过程提供热量的作用。其中,摩擦热指的是工具头与板材之间的剧烈摩擦而产生的热量,其大小与渐进成形的各项工艺参数有关,包括主轴转速、工具头直径以及下降量等等。由于板材的成形能力与零件性能取决于受摩擦热与工艺参数共同影响的板材微观组织。因此,本论文综合利用摩擦热渐进成形实验、有限元模拟技术、金相观测、拉伸试验、硬度测试以及X射线衍射分析
巨磁阻现象的发现极大地促进了现代存储行业的发展,但铁磁存储器相邻存储单元间的杂散场极大地降低了存储密度。随着在反铁磁自旋电子学领域取得的进展,基于反铁磁材料的存储器迎来了蓬勃发展。铬系硫族化合物种类繁多,其家族具有丰富的磁学特征,磁学性质涵盖铁磁、亚铁磁和反铁磁等,是研究材料磁性的理想体系之一。本论文选取具有室温稳定性的层状反铁磁Cr2Se3单晶为研究对象。采用化学气相输运法成功制备了高质量的单晶
升温时效是一种新型的时效工艺,属于非等温时效的一种,能获得良好的综合性能,在得到接近T6时效处理后的机械性的同时能具有更好的耐腐蚀性能。而且升温时效所需时间比等温时效短很多,效率高。同时对于厚的板件等大型件,升温时效工艺处理后各处的性能均匀性更好。本文主要选择在100℃的初始温度条件下,以20℃/h、40℃/h和60℃/h等升温速率,和在160℃、180℃、200℃和220℃等终止温度来进行升温时
非晶合金由于原子排列无序,没有晶界、位错等晶体缺陷,具有高硬度和优异的耐蚀性、耐磨性。但是非晶合金成形能力差和固有的脆性限制了其作为耐磨耐蚀材料的应用。制备非晶涂层有效解决这一问题,尤其是铁基非晶玻璃成形能力高和成本较低。本文分别采用电子束和电阻缝焊技术熔覆Fe23.8Co3.8Cr9.3Mo4.7C40B17.8Y0.6非晶粉末,在304不锈钢基体表面制备了铁基非晶涂层。采用X射线衍射(XRD)
在放电触发等待过程中,脉冲电源中电容电压通常会出现明显的跌落,而且放电触发等待时间的随机性会使得每次放电的电压跌落量均不相同。以用于电磁发射的脉冲电源为研究对象,根据脉冲功率模块的电路结构,分析了造成电容电压跌落的原因,主要是由于脉冲电容器自身漏电和主放电开关漏电所致。基于电磁轨道炮实验系统建立了仿真模型,计算了不同电容电压跌落量下的电枢出膛速度及速度下降率;仿真结果表明,电容电压跌落会导致电枢出
作为重要的金属增材制造技术之一,激光熔化沉积技术基于逐层堆积制造的原理,能够实现具有复杂结构零件的成形,同时缩短生产周期,近年来受到越来越多行业的关注。已经开发出许多适用于激光熔化沉积的金属材料,其中TC4钛合金由于具有优异的综合力学性能在航空航天工业、船舶和汽车等领域被广泛应用。然而,激光熔化沉积过程中,高能激光束与材料复杂的相互作用,形成细小且混乱编织的微观组织,导致TC4钛合金高强度但低塑性
航空航天、船舶、轨道车辆和压力容器等大型机械结构和零部件往往承受着复杂交变载荷的作用,在应力集中和结构薄弱处会萌生微裂纹,在交变载荷作用下微裂纹开始延伸并不断扩展,从而形成宏观裂纹。宏观裂纹的存在极大威胁了结构的安全和寿命,极易发生低应力脆断灾难性事故,造成重大的人员伤亡和财产损失。疲劳裂纹闭合现象发生于裂纹扩展过程中,是影响常幅和变幅加载下疲劳裂纹扩展规律的重要因素之一,裂纹闭合会对裂纹尖端附近
现有煤矿刮板输送机链轮(以下简称链轮)制造工艺一般为从厚壁管状自由锻件或带齿的铸件起步经切削加工而成,所获链轮轮齿容易断裂。为提高链轮力学性能和提高材料利用率,在对与链轮结构相似的大模数直齿圆柱齿轮、花键轴精密成形工艺分析基础上,提出链轮精密成形(做出轮齿)新工艺。本文以一种齿数7、模数59.2mm、齿宽230mm,轮毂宽424mm的链轮为研究对象,设计了单、双向镦挤一步法成形工艺和胎模锻模具。采