面向工业控制网络的自适应入侵检测方法研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:psyche_runner
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
意识障碍(Disorder of Consciousness, DOC)是一种严重脑损伤导致的慢性脑部疾病,其临床评估和机制研究依赖于神经生理学和神经影像学经验的互补。脑电图凭借经济无创、高时间分辨率的优势,为DOC患者的实时床旁监测提供了一种选择。作为大脑内部节律性电活动的直接反映,静息态脑电包含神经集群振荡、信息流路径等丰富信息。越来越多的证据表明脑功能网络的变化与意识的丧失或恢复相关,但目前
学位
数据驱动控制摆脱了对数学模型的依赖,仅利用系统运行过程的输入输出数据对系统的模型、状态或者控制信息进行学习的理论与方法。本文结合最优控制理论,给出满足系统性能指标的智能控制算法,主要内容如下:  1.针对多输入多输出线性离散时间系统的最优控制问题,采用虚拟参考反馈整定方法,设计二自由度控制器。首先基于开环数据提出数据驱动最优控制问题,然后建立二自由度控制器性能指标,通过虚拟参考反馈整定最小化性能指
多智能体系统在智能交通、智能电网、航空航天、机器人、无线传感网络等领域具有广泛的应用。协同控制使得智能体状态在集体层面上实现趋同,进而完成单个智能体无法完成的任务。本文结合国内外多智能体系统协同控制最新成果,研究了敌对与协作信息下多智能体系统的协同控制问题,并将其拓展到基于多智能体系统框架的社交网络舆论动力学和隐私保护问题。本文的主要工作总结如下:  首先,提出了敌对信息下一阶多智能体系统的协同控
层析成像技术以非侵入、非扰动的特性受到诸多关注。其中,电学、超声层析成像技术由于具有成本低、非辐射、测量范围广等优势,在工业、医学领域具有良好的应用前景。但是,在电学、超声层析成像技术的图像重建过程中,由于敏感原理所固有的非线性、非适定性的问题,造成重建图像的空间分辨率低、实时性差,难以满足实际应用的需求。因此,提高电学、超声层析成像方法的图像重建精度和实时性,对其在工业生产过程和医疗监测中的应用
学位
生物大脑的认知功能和信息处理机制的研究具有重要的科学意义和实用价值。近年来,受神经系统启发的深度学习方法在图像识别、语音识别、策略游戏等人工智能应用上取得了巨大的成功。但相比之下,人们对大脑实现这些认知功能的机制理解仍非常有限。而深度学习模型在工作机制上与生物神经系统也存在巨大的差异。与之相反,脉冲神经网络是更加符合生物电生理机制的神经网络模型,一直是神经科学领域建模的重要工具,在发展强人工智能系
学位
学位
学位
学位
窄带物联网(Narrow Band Internet of Things,NB-IoT)技术自2016年确立标准以来因其低功耗、大连接、广覆盖等优势逐渐成为万物互联网络的最重要组成部分之一。IPv6(Internet Protocol version 6)技术为解决日益增长的网络设备接入互联网需求与IPv4(Internet Protocol version 4)共有地址匮乏的矛盾得到了广泛应用,
学位