【摘 要】
:
近年来,随着传感器种类的丰富和成本的不断下降,多传感器融合技术受到了广泛的研究和发展,研究者们正采用多传感器融合技术完成各种智能机器人的状态估计任务。目前,研究者们已经利用相机、惯性测量单元(IMU)、激光雷达等传感器在某些场景中的机器人轨迹导航上获得了较好的状态估计精度,但是对于地面上运动的机器人,IMU包含的尺度会缓慢漂移,保证精度和鲁棒性依然是一个非常关键且有挑战性的工作。本文提出了一种融合
论文部分内容阅读
近年来,随着传感器种类的丰富和成本的不断下降,多传感器融合技术受到了广泛的研究和发展,研究者们正采用多传感器融合技术完成各种智能机器人的状态估计任务。目前,研究者们已经利用相机、惯性测量单元(IMU)、激光雷达等传感器在某些场景中的机器人轨迹导航上获得了较好的状态估计精度,但是对于地面上运动的机器人,IMU包含的尺度会缓慢漂移,保证精度和鲁棒性依然是一个非常关键且有挑战性的工作。本文提出了一种融合双目视觉、IMU和轮速计传感器的紧耦合机器人状态估计算法,包含初始化、测量预处理、预积分纠正、相机和轮速计内外参标定以及多传感器联合优化等模块。本研究利用视觉纠正IMU噪声,降低低性能IMU的数据噪声。对于地面机器人,加入轮速计传感器,可以解决尺度漂移的问题,并提高系统的鲁棒性。整个研究核心贡献可分为三个部分。首先是视觉信息纠正IMU预积分值,降低IMU随机游走和连续积分离散化带来的噪声;其二是实现了相机和轮速计的内外参标定程序;最后是对多传感器数据融合方式的研究,实现了一种简洁有效的轮速计融合方式。本文实现了轮速计的内参外标定程序,标定的参数有非常好的一致性,误差波动在2.5%,该标定方法已开源。我们在大型工厂环境中采集了有代表性的数据集,状态估计精度相比目前同类型的最好系统,提升约50%。值得一提的是,数据集中包含大量不稳定因素,比如暗光、反光、直线运动、动态物体等,系统仍可以高效地运行,体现了我们系统较好的鲁棒性。多传感器融合状态估计是一个十分重视应用的研究领域,本文实现的系统可以广泛应用于餐厅服务机器人、仓库物流机器人、扫地机器人以及自动驾驶汽车等设备的定位和导航任务。
其他文献
视频中包含的信息丰富复杂,对视频分析技术的探索和研究得到了各界的高度关注。由于深度学习技术的迅猛发展,深度网络在视频分析中的性能相较于传统机器学习模型有显著的提升,而在视频分析中得到广泛应用。时序行为检测是视频分析工作中基础且具有难度的一项任务,对基于深度学习的检测任务和视频理解工作的发展都具有很大的推动意义。论文针对时序行为检测任务,以典型的端到端时序行为检测模型为基础,在时序多尺度结构、光流特
回转运动部件是数控机床中的主要部件,其工作状态的好坏能够直接影响整台机床生产加工的质量、机床使用寿命及生产事故发生几率。机械故障诊断技术已经从过于依赖专家知识的传统方法发展到基于数据的人工智能现代方法,极大的提升了故障诊断过程的精准率和诊断模型的鲁棒性与普适性,同时也引入了模型的泛化性能依赖于数据的数量及其质量的新问题。论文基于较少数据量的场景,分析了信号的不同特征空间对故障信息表征的好坏情况,并
现有的消防水炮供水压力在1MPa左右,依赖大流量提高射程,对大容量水源需求较大,并且由于火灾发生的不确定性,仅凭人工往往不能及时消防灭火,为了减小消防场所对流量的需求以及能够自动消防灭火,本文设计了一种智能高压消防水炮,针对零部件结构设计、软件设计、射流轨迹预测和系统动态性能等关键技术问题开展了理论研究,并进行了相关仿真,为样机研制奠定了基础。本文首先在传统消防水炮的基础上,进行了高压消防水炮的结
随着广大研究者对机器人相关技术研究的不断深入,越来越多配有视觉系统的机器人被应用于工业领域,如自动抓取、自动装配。相机作为机器人的眼睛,对机器人来说至关重要。随着机器视觉的发展,三维重建技术已经成为机器视觉的重要研究方向。因此如何快速而准确地获取被测物体的三维信息,并根据获得的三维信息重建被测物体获取物体的点云数据,成为了一项重要且有难度的研究课题。首先,本课题对DLP双目立体视觉系统的构建进行了
随着工业自动化和人机交互智能化发展,工业机器人作为典型的智能装备,广泛应用于3C、加工、汽车等行业。针对机器人工作站搭建成本高、运动控制复杂、编程困难等问题,本文结合实际生产中的跟随与码垛需求,通过建立机器人工作站虚拟模型、设计工业机器人运动仿真算法和工艺、构建指令编程及译码系统,实现了能够实时模拟工业机器人实体运动的工业机器人工作站可视化平台。针对工业机器人模型结构复杂、零件繁多的特点,通过提取
近年来,图神经网络(Graph Neural Network,GNN)相关研究领域逐渐火热,与深度学习的结合为可推理性、可解释性和模型效果带来了巨大提升。推荐领域也逐步开始采纳GNN类方法解决面临的挑战。GNN可以自然地整合节点信息和拓扑结构,已被证明在图上有着很强大的学习能力。电商场景中,用户,商品,以及两者之间的行为可以用一张二部图来表示。预测用户未来的行为,转化为预测二部图中用户-商品边的概
建筑能耗已经成为我国能耗总体的重要部分,在建筑相关设备中,维持室内空气品质及热舒适环境的建筑空调系统的全年能耗占据了建筑总能耗的一半左右。而针对建筑空调系统的精确能耗预测能充分挖掘系统的节能潜力,为建筑空调系统故障检测与诊断、运行策略控制优化等技术提供可靠依据。本文运用数据驱动技术,将能耗预测问题转化成序列决策问题,提出了一种基于深度强化学习的建筑空调系统能耗预测新方法。本文主要探究了深度强化学习
由于恐怖份子携带危险物品危害社会治安的情况屡屡发生,使得人体安检目前在世界各国备受重视。通过主动毫米波图像进行人体是否携带有隐匿危险物品的检测方式能够较好地对人体进行检测,但使用人工对图像检测仍然存在被检测人员的隐私泄露以及检测人员的视觉疲劳等多方面问题。而基于深度学习的目标检测方法能够实现自动化的学习目标特征,端到端的进行人体检测。因此本文将针对所使用的主动毫米波图像数据集的特点,对其相应的隐匿
现在很多工业现场都引进了工业机器人以实现不同程度的自动化,但是固定平台的轮廓加工工艺存在无法满足工艺要求或者效率过低的问题,亟需有更好的解决方案。为了弥补固定加工方案造成的效率较低和无法满足工艺要求的问题,本课题要靠自行研发来满足这一需求。轨迹跟踪常常在各种实况中应用,如抓取、分拣等。跟踪功能可以极大地提高工作效率,优化生产线的整体结构。通过编码器从直线输送带上获得位移和速度信息,使用匀加速运动和
随着中国经济的发展和世界各国经济文化交流的不断深入,人口的流动范围越来越广。身份证件既是个人出行的主要凭证,也是各海关、机场、火车站对公民进行身份核查的重要依据。基于证件识读技术产生的智能证照阅读设备被广泛应用于相关场所的人证核验系统中,其核心组件为证件芯片射频识别部分和证件图像采集部分。但这些证件阅读设备存在种类繁多、识读证件类型单一、识读速度慢、抗外部光源干扰能力差等不足,给手持各式证件的人员