论文部分内容阅读
由于生物传感器在临床、环境、食品等领域具有广阔的应用前景,多年来吸引了人们极大的研究兴趣。20世纪90年代纳米技术的介入为生物传感器的发展提供了新的活力,并引发了突破性的进展。纳米复合材料的最大优点是能将不同性能的材料结合起来,在同一种材料上产生更多更特殊的性能。纳米碳管(MWCNT)和纳米金(GNP)的复合组装研究已经引起人们广泛的注意,为传感器的研究带来了新的机遇。本研究工作的第一部分主要阐述了纳米金和碳纳米管修饰的过氧化氢酶(CAT)生物传感器的制备和性能研究。利用高生物亲和性的纳米金和高化学稳定性的碳纳米管与过氧化氢酶共同组装到电极表面,构建了具有高灵敏性的过氧化氢酶生物传感器(Nafion/CAT-GNP/MWCNT/PG)并实现了过氧化氢酶在热解石墨电极表面的直接电化学。固定在生物传感器表面的过氧化氢酶分子在-0.15 V~-0.75 V范围内,0.1 MpH 6.98的磷酸缓冲溶液中进行循环伏安测量,获得了一对几乎可逆的氧化还原峰。通过研究其在不同扫描速率下的电化学行为,可获得该生物传感器的一些电化学参数:在电子传递系数α近似等于0.5时,电子转移速率常数ks=3.98 s-1等。利用循环伏安法研究了过氧化氢酶生物传感器在不同pH值的缓冲溶液中对氧化还原峰电势的影响,结果表明,过氧化氢酶的电化学过程为一电子的传递伴随有一质子的耦合的过程。制备的过氧化氢酶生物传感器不仅稳定性高,而且对过氧化氢具有良好的电催化活性,响应灵敏,可有效的用于H2O2的检测。研究工作的第二部分侧重于稀土离子Eu3+与中心蛋白配位作用的电化学研究。中心蛋白是EF-hand钙结合蛋白,是钙调蛋白超家族中的一员,在细胞的正常分裂及包含中心蛋白的纤维系统收缩中起重要作用。本文选用PCR技术及基因重组技术,得到了中心蛋白分子的片段(P23),探讨了其与Eu3+离子的配位作用。在0.01 M pH为7.4的Hepes缓冲溶液中,利用循环伏安法、差分脉冲法及电化学阻抗技术研究了中心蛋白与Eu3+相互作用的电化学行为。在-0.20 V~-1.2 V范围内的循环伏安研究表明,中心蛋白与Eu3+发生配位作用,在-0.839 V(形式电势E0′)处产生了一对几乎可逆的氧化还原峰,这与中心蛋白与Eu3+本身的氧化还原峰(E0′=-0.610 V)明显不同,说明Eu3+进入了中心蛋白的结合位点与其结合形成了配合物Eu3+-P23。通过研究Eu3+及Eu3+-P23在不同扫描速率下的电化学行为,可分别获得一些有用的电化学参数。利用脉冲伏安法并通过计算可求得Eu3+-P23的结合常数,并对其配位形式及成键亲和性做了简单的讨论。对该中心蛋白的研究,不仅有助于阐明低等真核生物的细胞分裂、细胞运动等重要生命活动过程的本质,也有助于分析稀土离子在蛋白质中的配位性质,而且将其用作稀土离子进入生物体细胞内的主要靶蛋白的模型,对深入研究稀土生物学效应的化学基础具有重要意义。