基于脉冲神经网络误差反传算法的脑功能模拟与机制分析

来源 :天津大学 | 被引量 : 0次 | 上传用户:wangwei0101
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物大脑的认知功能和信息处理机制的研究具有重要的科学意义和实用价值。近年来,受神经系统启发的深度学习方法在图像识别、语音识别、策略游戏等人工智能应用上取得了巨大的成功。但相比之下,人们对大脑实现这些认知功能的机制理解仍非常有限。而深度学习模型在工作机制上与生物神经系统也存在巨大的差异。与之相反,脉冲神经网络是更加符合生物电生理机制的神经网络模型,一直是神经科学领域建模的重要工具,在发展强人工智能系统方面也更具潜力。但是,由于脉冲神经网络的复杂性,一直缺少令人满意的方法实现复杂认知功能的模拟。这导致很难在介观层面建模和研究大脑功能机制,也导致宏观层面的理论很难联系到微观的生物细节。因此,本文基于脉冲神经网络模型,提出了通过放电时刻学习算法模拟大脑认知功能,并通过改变训练网络的生理约束和网络结构分析脑功能机制的研究思路。
  首先,网络结构和集群活动是脑功能的基本载体,而神经元的放电动力学活动是进行信息处理的基本单元。本文提出了可以进行训练并能精确模拟神经动力学特性的单神经元模型,并对神经网络动态活动建模进行了研究。基于积分放电类(LIF)神经元模型提出了扩展的广义积分放电(GLIF)模型,用以准确模拟生物神经元多时标的、非线性的脉冲放电过程。通过构建基本的神经网络结构,分析了关键的结构特性对神经集群的振荡、相关性、规则性等活动特性的影响规律,并验证了通过时间编码传递信息的可行性。神经元及网络动力学的研究为进一步构建具有实际功能的神经网络提供了理论基础。
  其次,提出了改进的放电时刻的误差反传算法,实现了在复杂网络结构和动力学状态下脉冲神经网络的稳定学习。推导了提出的三类广义积分放电模型的神经网络梯度反传算法,保证算法在任意放电形式和网络结构下的有效性。分析了SpikeProp类学习算法学习效率低和训练不稳定问题的主要原因。并基于分析结果和生理理论依据,提出了梯度动态阈值方法以及放电率和突触权值等的调制方法。基于学习算法,提出了通过认知任务的训练进行神经网络功能的建模和机制分析的研究框架。
  最后,基于提出的研究框架,实现了同步、连续放电等不同网络动态和视觉、运动等功能的建模和机制分析,验证了算法的灵活性和有效性。本文将提出的网络模型和学习算法应用于不同的认知任务的学习中,并基于训练得到的网络分析了神经网络实现这些功能的机制。通过构建不同的神经网络结构、采用不同的网络活动状态和损失函数,本文分别训练实现了图像识别任务、运动规划任务以及反馈运动控制任务。在图像识别任务中,分别采用全连接前馈网络以及具有局部结构的前馈网络学习了MNIST手写集和Caltech数据集的图像识别,并进一步分析了多种生理机制和网络结构特性对学习过程及网络信息处理机制的影响。在运动控制任务中,本文基于多时标的GLIF神经元模型和放电时刻编码的学习算法,实现了通过神经网络连续放电活动进行运动控制的功能的学习。运动规划任务实现了将同步放电编码的运动指令转化为连续脉冲序列表征的运动轨迹,证明同步放电编码的信息可以快速转换成连续脉冲序列表征的信息。进一步,采用了有监督学习和增强学习的方法实现了基于时间编码的反馈运动控制。分析了神经网络实现反馈运动控制的网络结构和动力学机制,同时讨论了实际应用中非常重要的力输出优化以及对被控对象参数变化的鲁棒性等问题。
  上述应用研究展示了脉冲神经网络学习算法与多种网络结构、动态及生理特性的兼容性。后续研究可以加入更多的生理机制,从而探索更复杂和更真实的大脑认知功能和机制的模拟。同时,这些应用研究也向机器学习体系加入了更多的仿生机制和生物信息处理原则,拓宽了人工智能领域的理论框架。本文的研究思路既为神经科学理论研究提供了有效的功能建模工具,又为发展强人工智能系统提供了新的模型框架。
其他文献
对流性大风是我国常见的强对流灾害天气之一,每年造成巨大的经济损失,具有局地性、突发性、破坏力大的特点,这使得对流性大风的临近预报非常困难。多普勒天气雷达可以生成高时空分辨率数据,是观测和预报对流性大风的重要设备。但现有的关于对流性大风的智能预报算法不能充分地利用雷达数据所提供的信息,临近预报效果有待提高。为了改善对流性大风的智能预报效果,本文研究使用图像处理和机器学习方法,在雷达数据质量控制、与对
随着微处理器、新能源等先进技术迅猛发展,以及四旋翼无人机控制方法研究日益深入,四旋翼无人机吊挂飞行运输系统的应用前景愈加广阔,在物流运输领域尤为突出。越来越多的研究团队在进行与之相关的研究,而四旋翼无人机吊挂飞行运输系统的强欠驱动、强耦合、高非线性、高自由度等特性,增加了其控制设计研究的难度。  四旋翼无人机吊挂飞行运输系统控制研究充满了机遇与挑战。本论文考虑当前研究现状中的局限与不足,围绕无人机
嗅觉作为生物进化史上最古老的感觉,与人类的记忆、学习和情绪等密切相关。大脑皮层是最高级的神经中枢,能够评估来自各感觉器官的刺激。研究大脑对不同气味的识别能力在嗅觉功能障碍的评估与诊断、抑郁症等精神类疾病患者的情绪调控等方面具有重要的意义。近年来基于脑电(electroencephalogram,EEG)技术的嗅觉研究逐渐受到各国学者的关注,并将其用于对气味种类和情绪的识别。然而,目前的研究大多基于
学位
非线性系统的优化控制问题是控制领域重要的研究课题之一。由于实际系统强大的非线性特性,通过对系统建立数学模型,利用传统的基于模型的控制方法求解最优控制器的思路受到了限制,因此探索模型不能完全确定或完全未知情况下的非线性系统的最优控制方法,是非常重要且有价值的研究课题,而强化学习方法是求解系统模型无法精确获得时的有效智能控制方法之一。因此本文主要是基于强化学习方法求解非线性系统的最优控制问题,主要研究
电阻抗层析成像(Electrical Impedance Tomography, EIT)技术是一种无损伤的可视化检测技术,具有高时间分辨率、无辐射、非侵入、价格低和便携性等优点,目前已应用于医学监护、工业检测等领域,但EIT技术的低空间分辨率限制了其在应用领域中的发展。为提高重建图像质量,本文对EIT的重建算法展开研究,主要包括数据融合、正则化算法等,具体如下:  1.针对EIT单一激励模式的局
电阻抗层析成像(Electrical Impedance Tomography,EIT)技术作为一种新型可视化检测技术,具有无侵入性、实时无损、功能成像和经济性的优势,特别是EIT技术在一定条件下具有的高时间分辨率使其在许多重要领域得到应用。然而,EIT技术固有的“欠定”问题和“软场”效应,使其空间分辨率远低于目前许多已有的层析技术,如CT(Computed Tomagraphy)、MRI(Mag
意识障碍(Disorder of Consciousness, DOC)是一种严重脑损伤导致的慢性脑部疾病,其临床评估和机制研究依赖于神经生理学和神经影像学经验的互补。脑电图凭借经济无创、高时间分辨率的优势,为DOC患者的实时床旁监测提供了一种选择。作为大脑内部节律性电活动的直接反映,静息态脑电包含神经集群振荡、信息流路径等丰富信息。越来越多的证据表明脑功能网络的变化与意识的丧失或恢复相关,但目前
学位
数据驱动控制摆脱了对数学模型的依赖,仅利用系统运行过程的输入输出数据对系统的模型、状态或者控制信息进行学习的理论与方法。本文结合最优控制理论,给出满足系统性能指标的智能控制算法,主要内容如下:  1.针对多输入多输出线性离散时间系统的最优控制问题,采用虚拟参考反馈整定方法,设计二自由度控制器。首先基于开环数据提出数据驱动最优控制问题,然后建立二自由度控制器性能指标,通过虚拟参考反馈整定最小化性能指
多智能体系统在智能交通、智能电网、航空航天、机器人、无线传感网络等领域具有广泛的应用。协同控制使得智能体状态在集体层面上实现趋同,进而完成单个智能体无法完成的任务。本文结合国内外多智能体系统协同控制最新成果,研究了敌对与协作信息下多智能体系统的协同控制问题,并将其拓展到基于多智能体系统框架的社交网络舆论动力学和隐私保护问题。本文的主要工作总结如下:  首先,提出了敌对信息下一阶多智能体系统的协同控
层析成像技术以非侵入、非扰动的特性受到诸多关注。其中,电学、超声层析成像技术由于具有成本低、非辐射、测量范围广等优势,在工业、医学领域具有良好的应用前景。但是,在电学、超声层析成像技术的图像重建过程中,由于敏感原理所固有的非线性、非适定性的问题,造成重建图像的空间分辨率低、实时性差,难以满足实际应用的需求。因此,提高电学、超声层析成像方法的图像重建精度和实时性,对其在工业生产过程和医疗监测中的应用
学位