论文部分内容阅读
现实生态系统中存在着各种各样的干扰,他们对自然界中生物种群的动力学行为产生着重要影响.本文旨在借助随机微分方程、脉冲微分方程、泛函微分方程等的理论和方法,考虑季节波动、人为捕获等的影响,探索建立相应的随机非自治、脉冲种群动力学模型和随机传染病模型,研究系统模型的动力学性质,给出种群共存和疾病控制的策略,为生态保护区可持续性的开发利用与保护提供建设性的建议.本文主要的工作和贡献如下:1.基于非自治微分方程理论,构建了一类具有Holling-II功能反应和饱和恢复率的非自治捕食—被捕食模型来讨论候鸟在疾病传播中的作用.在非常弱的条件下,给出了判定疾病持久、灭绝和全局吸引性的充分条件.得到在捕食—被捕食系统中,捕食是有益于疾病的控制和增强持久性的,捕食者也许能够成为防止疾病流行的一个有效的生物手段.2.建立带有白噪音和Crowley-Martin型功能反应的非自治捕食—被捕食模型,研究白噪音对捕食者种群和食饵种群生存的影响.得到系统全局正解的存在性、唯一性和随机最终有界性,给出了保证种群灭绝、平均持续和随机持久的充分条件,并讨论了系统的全局吸引性和依概率随机持续.借助数值模拟说明了白噪声和功能反应对种群性质的影响.3.分别构建了非脉冲和脉冲作用下的随机非自治捕食—被捕食模型,并考虑了对食饵和捕食者种群的广义非线性捕获.对于非脉冲随机捕食—被捕食系统,得到了系统正解的存在性和唯一性,给出了种群平均持续和灭绝的充分条件.通过构造恰当的Lyapunov函数和使用Khasminskii定理,证明了系统非平凡正周期解的存在性.同时,讨论了系统的全局吸引性.得到白噪声的强度和非线性捕获项对系统的动力学性质有着重要的影响,可导致捕食者种群的灭绝.此外,得到了脉冲效应下随机非自治系统正周期解的存在性.结果表明,当脉冲充分大时,捕食者最终呈现周期性.4.考虑随机噪声的影响,建立了两类具有饱和发生率的流行病模型.首先,建立一类具有饱和治愈率和发生率的随机SIR传染病模型,给出了全局正解的存在性和唯一性,并通过构造恰当的Lyapunov函数,得到了随机系统存在唯一平稳分布和遍历性成立的充分条件.同时,研究了疾病的灭绝性.其次,考虑环境噪声和媒体报道的作用,建立一类随机SIRS模型.讨论了系统的随机地方病动力学和随机平稳分布.理论分析和数值模拟说明,由媒体报道引起的接触率的最大限度减少量将会加速染病种群的灭绝和降低疾病流行的危险性.